Articles tagged with: Study Management

Connecting With Investors – Any New Ideas?

I recently read some LinkedIn posts from junior mining executives and IR staff asking for ideas about new ways to engage with investors.  The commonly used ways rely on PowerPoints, webinars, and trade show booths.   However during this Covid-19 crisis, trade shows are no longer an option.  Therefore these face to face discussions with investors will now be missing.  This will impact on the ability of a company to connect with and establish trust with those people.

What else can be done?

Perhaps with technology, like Zoom, one can replicate the personal feel of a trade show booth. One can still have back and forth conversations with investors rather than just doing lecture style webinars.
Free discussion is good in most cases. Letting investors feel they are sitting around a table will give them a better understanding of how management thinks and how decisions are being made.  It will also help them get to know the personality of the management team.
I’m not an IR person but I admire the job they have to do, especially in today’s business environment.  I have recently sat in on several junior mining online webinars.  When listening to the Q&A’s afterwards, it is apparent that many attendees enjoyed understanding the technical aspects of a project.  However they will only get that understanding by asking questions.  Trade show booths gave them that opportunity.

Technology gives some options.  Like what?

Set up regularly scheduled Zoom meetings, enabling investors to have interactive back and forth conversations with management.  Try to avoid long presentations with questions only at the end. Have a moderator review and ask questions as they come in.
Management teams should introduce more than just the CEO or COO.  Include VP’s of geology, engineering, corporate development, from time to time.    Don’t hesitate to let the public meet more of your team.  Trade show booths are often manned by different team members.
Pick different topics for discussion on each conference call to avoid repeating the same PowerPoint over and over again.
Avoid being too scripted.
For example one call could be a fly-around of the property using Google Earth.  Another call could focus on the ore body and resource model.  Another call might discuss metallurgy and the thought process behind the flow sheet. Perhaps discuss the development options you have considered.
None of this information is likely confidential if it has been presented in your 43-101 report.
Companies file highly technical 43-101 reports on SEDAR, but then let the investors fend for themselves.   One could take some online time for high level walk through of the report.  Clearly explain technical issues and how they have been addressed or will be addressed in the future.  This is an opportunity to explain things in plain English, and field questions.
One downside to such calls is if there are significant flaws with a project.  Open discussions may help expose them.   One needs to know your own project well, be aware of all the issues, and have them under control in one way or another.

Conclusion

Better communication with investors can increase confidence in a management team.   Although some investors may not enjoy technical discussions, I think there is a subset that will find them very helpful and interesting.  There will likely be an audience out there.
Mining projects are complex with many moving parts and many uncertainties. Trust and confidence will come if a company is transparent in what they are doing and explain why they are doing it.
The mining industry is looking for new ways to reach out, so it shouldn’t be afraid to try new things. Some management teams will be great at it, others not so much.  Figure out where you fit in.
Unfortunately one of the aspects of trade shows that cannot be replicated is the ability for investors to wander around aimlessly, take a quick glance at a lot of companies, and then decide which ones they want to learn more about.

Warning: zoom bombing

As an aside, if you are using Zoom make sure the host has configured the right settings.  There are instances where anonymous participants can suddenly share their own computer screen, i.e. with questionable videos, to the group.  It’s been referred to as “zoom bombing”.
Read more about how to prevent zoom bombing at the following two links.
https://www.forbes.com/sites/leemathews/2020/03/21/troll-terrifies-zoom-meeting-zoombombing/#2765abfc3e70
https://www.businessinsider.com/zoom-settings-change-avoids-trolls-porn-2020-3
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.   
Follow me on twitter (@KJKLtd) or LinkedIn at https://www.linkedin.com/in/kenkuchling/)
Share

Consultants Have to Earn a Living Too

The number of independent mining consultants is increasing daily as more people reach retirement age or are made redundant.
Nowadays it seems everyone is gradually becoming a self-employed consultant. Possibly that is because retirees need the money.  Maybe they need something post-career to keep them occupied.
Here are a couple of lesser known ways to generate income for those of you choosing this new career path.
One of these has been around for awhile while the other is relatively new.  I only have personal experience with one of them.

GLG – Give me an hour

GLG (https://glg.it/) is one of several information services that provide short term consulting assignments.  By short term, I mean 1 to 2 hours long.
GLG has been around for many years providing a platform for connecting those seeking information with those who have it.
Typically someone, like an industry analyst, poses a question that gets sent out to relevant experts.
The question could be something like “XX Mining Company owns the Bonanza mine and our client would like to learn more about that operation including reserves and operating costs”.
Anyone who has the requisite knowledge can accept the consultation and submit their credentials for review.  If you’re selected, such consultations take place very soon.  They can be for 1 to 2 hours and pay $200 to $500 dollars.  GLG are very strict that rumors or confidential information are not disclosed during any of the consultations.  Only public information is to be used.
Since I have a background in potash, I am often issued potash industry related requests.  Questions posed might be “Can you describe the Saskatchewan potash industry, including operations, expansions, marketing plans, and operating costs”.  That’s a heck of a lot of information to provide in a 1 to 2 hour time frame for $400.   Likely very few people would possess all of that knowledge.   I assume their approach is to consult with several different experts and eventually piece together the puzzle.
Check out the GLG website. It’s free to sign up as an expert and maybe you’ll get yourself an assignment. I think there is even a reward for referrals (which I assume I will get shortly).

Digbee – What’s wrong now?

Digbee (https://thedigbee.com/) is a relatively new online venture that I’ve not yet used.  It is essentially a due diligence platform where one can hire experts to undertake targeted due diligence studies.
Furthermore any expert can prepare an independent review on a topic of their choice and then offer it up for sale.
The typical report costs $1,640 to $4,680 dollars.   As of March 2020, they have 13 reports for sale and 5 more in the pipeline.  Here’s a brief explainer video from the founder
The report list can be seen at this link.  The reports appear to be focusing on potential technical flaws in a project. Some titles are listed below.
  • Sample recoveries at shallow depths is a concern, this is not helped by the total lack of QAQC data” an analysis of Bomboré ($4,680)
  • Has the extensive testwork at Bomboré finally found an optimum process to proceed to development?” ($4,680)
  • Alpala’s technical merits and compares its cost estimate to other block caving development projects.” ($3,120).
  • Cerro Blanco’s very complicated geology in Guatemala may mean more expensive mining techniques will be required.” ($4,680)
  • Epithermal geologist raises questions on the reliability of the low grade resource at DeLamar.” ($3,120)
  • What impact does serpentinisation have on the confidence of recovered grade at RNC’s Dumont project?” ($4,680)
I’m not sure how many report copies each consultant will be able to sell .  However a click-bait title may help sell at least one copy.  That would be to the company the report is about.   Perhaps major investors or financial analysts will also buy a copy.
So if you have some free time, pick a project that’s on your radar and write a review.   It appears that you’ll get a 50% share of the revenue.    To learn more, read an article at this link.
I’m curious if the Digbee platform will continue to grow.  It’s unique to see independent research identifying potential issues with mining projects. Someone jokingly mentioned that these are the anti-newsletter writers.  I’m also curious to see how long before the lawyers and lawsuits begin to show up.
Given the relatively low price for these reports, I think one might make a lot more money (from TMZ) if one wrote a report titled “Famous Hollywood starlet has scandalous affair with mining company CEO”.

Conclusion

If you’re becoming an independent consultant, check out these two revenue channels.   They are tailor made for our growing numbers.
Follow me on twitter (@KJKLtd) or LinkedIn at https://www.linkedin.com/in/kenkuchling/)
Share

Benchmarking – Let’s See More Of It

Benchmarking is the process of measuring performance of a company’s attributes against those of another. Ideally the benchmarking comparison is made against what are considered to be the best in the industry.  Sometimes however the comparison is simply made between industry peers.
We often see junior mining companies benchmarking themselves against others. Sometimes corporate presentations provide graphs of enterprise value per gold ounce to demonstrate that a company might be undervalued.
We also see cash cost charts (an example to the right) benchmarking where a company’s production cost will rank among its competitors.
I view benchmarking as a great thing. The information can be very insightful, but with the caveat that it takes effort to ensure the comparative data is accurate.

Can we see more benchmarking?

Given the benefits of benchmarking, another area that might warrant such effort is related to capital cost estimates.
When a project moves into the development stage, the first two observable metrics are the construction progress and the capital cost expenditures. The capital cost trend is generally given very close scrutiny since it is a key indicator describing where a project is heading.
Lenders may have observers at site monitoring both construction progress and cash expenditures. Shareholders and analysts are watching for news releases that update the capital spending. Their concern is well founded due to several significant cost over-run instances.
Some of these over-runs have been fatal whereby the company has been unable to secure additional financing for the extra costs. There are others instances where a financing white knight has come in and essentially wrestled company ownership away from current shareholders.
Some industry people also feel that capital cost performance can foreshadow a project’s performance once it goes into commercial production.
Capital cost over-runs may be caused by poor execution and/or unforeseen events, or due to inaccurate cost estimation to begin with.  Many investors still have apprehension with capital cost estimates from advanced studies. This is where benchmarking may play a role. Mining company shareholders may want to see a comparison of their project capital cost with other similar projects.

Project databases

It would be a good thing if the mining industry (or other concerned parties) work together to create open source project databases. These would incorporate summary information and cost information for global mining projects.  The information is already out there, it just needs to be compiled.
One nice thing is that younger workers coming into the mining industry exhibit an interest in collaboration and information sharing. Hence maintaining the databases could be done by interested parties, industry experts, and/or crowd sourcing.
The databases would be public domain accessible to everyone and  could be used to benchmark a project against other similar projects.  The Global Tailings Portal (tailing.grida.no/about) is working to build a freely accessible database for the thousands of tailings dam globally. Its the same idea.
I realize that many mining projects are unique with site specific features and conditions. However many projects are also very similar to one another. For example West African gold projects in many cases can be replicates of one another with similar capital costs.
Published technical reports could include a chapter on benchmarking, whereby a project is compared with other similar projects. A company could provide rationale why their project will be costlier (or less expensive) than the others.

Conclusion

Benchmarking can be a great tool when done correctly. Benchmarking  capital costs might bring more transparency to the project development process. It may help convince nervous investors that the proposed costs are reasonable.
We already see corporate presentations using benchmarking, so why stop at production costs and share price valuation.
One could expand the reach to include operating costs but internal confidentiality may be an issue.  Furthermore operating costs are longer in duration and subject to change with global influences.
Capital cost accuracy is one of the primary concerns in the development of new projects. Possibly more benchmarking is part of the solution.

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Consulting and Stock Compensation

The other day a press release came across my desk with the following title “First Mining Issues First Tranche Of Shares To Ausenco; Pre-Feasibility Study For Springpole Gold Project Underway”.
Reading it further, it was apparent that their study consultant, Ausenco, was being paid in company stock in lieu of cash.  The arrangement included an initial financing of $750k with a further $375k to follow once the pre-feasibility study was 75% complete.  Upon completion of the study another share payment was due.
That press release was interesting. I personally had never seen one like this before.
Some may see independence as an issue with their fiscal arrangement. Maybe… but this blog isn’t about the need for independent QP’s.  In fact I don’t recall feasibility studies having that requirement.  Some 43-101 resources estimates do require independence.
An industry discussion about where independence is required would be an interesting exercise.  However I will leave that conversation for a future post.

Would you work for company shares only?

I have never been in a situation where I was consulting with  company shares as my compensation.  Neither have I ever managed a study where outside consultants were being paid in shares.   However I can see the possibility of interesting dynamics at play.
In the past I have worked as an owner’s study manager and been awarded stock options along with salary.  In that role, my job was to look after the owner’s interests, pushing for cost efficiencies and optimizations.
Regarding share compensation, there are significant risks on the consultant’s side when they agree to be paid in shares.   I can see both positive and negative aspects with that type of a relationship.
I am not passing judgement here on what is right or wrong.  My objective is to comment on some basic issues that may arise.

Pro’s and Con’s

The positive aspects one might experience include;
  • It’s easier for the company to pay for the study since there are no cash outlays from the treasury.
  • The consultants might have the company’s best interests at heart since they will now be part owners of the company.
  • Possibly there will be greater technical effort to produce optimal designs and cost estimating efficiencies in the drive for great economics.
The potential pitfalls of this approach might include;
  • A public perception that the study is not impartial.
  • There is an overhang of shares that may be dumped onto the market in the near future.
  • Possibly the consultant will charge a premium for their services due to the financial risks they are taking.
  • The company may be more tolerable of study cost overruns since there is no hard cash outlay.
Regarding the first item “impartiality”, in the past there have been questions raised about the impartiality of engineering firms. I first recall reading this claim many years ago in a public response to a mining EIA application. Unfortunately I cannot find the exact source now.
The concern was whether the consultant’s work would be overly optimistic, seeing that they would eventually gain as a project moved from PEA through to the PFS and FS stages. They didn’t want to kill the golden goose. The project’s opponents were making the argument to the regulators “don’t believe what the engineering company is telling you”.
I’m curious how many times this argument has been used, seeing that it’s been around for some time.

Conclusion

It would be interesting to know how many consulting firms would be willing to accept compensation solely in shares.  Stock prices move up and down and the outcome of the study itself can have an impact on  share performance.
Unlike being paid in bitcoin, which also fluctuates in value, shares will generally have a hold period before they can be sold off.  This further increases the consultant’s risk.
I am curious to see whether the First Mining + Ausenco financial arrangement will create a precedent. Possibly it happens more than I am aware of.  Realistically I don’t see anything wrong with the approach, although one needs to understand the perceptions that it can create.   See where you sit if you were on the owner’s or consultant’s side and this idea was being discussed.  What would you do?
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

NPV and Sustainable Mining – Friends or Foes

I recently wrote a blog about the term “sustainable mining” and the different perspectives to it. Does sustainable mining mean having a long term sustainable mining industry or does it mean providing sustainable benefits to local communities? There are two ways you can look at it. If interested, the link to that blog is here.
It’s no surprise that the mining industry wants to promote more sustainable mining practices. It’s the right thing to do. However, in my experience, sometimes NPV analysis can be at conflict with sustainable mining practices. That opinion is from my engineering perspective.  Those working in the CSR field may have a different view on it.

Majors, mid-tiers, juniors see things differently

There are essentially three different types of mining companies; majors; mid-tiers, and junior miners. They have different financial constraints imposed upon them and these constraints will impact on their decision making.
In general to get financing and investor interest, development projects must demonstrate a high NPV, high IRR, and short payback period. This requirement tends to apply more to the small and mid tiered companies than to the major companies.  The majors normally have different access to financing.
A characteristic of NPV analysis and cashflow discounting is the penalizing of higher upfront costs whilst reducing the economic impacts of longer term deferred costs. This feature, combined with the need to manage NPV, will influence design decisions and operating philosophies.  Ultimately this will impact on the rate of adopting of sustainable mining practices.
Mining companies often have two masters they must try to satisfy. One master is the project investor(s) that wants their investment returns quickly and with limited risk. The second master is the local stakeholder that wants a safe project with long lasting benefits to the community.  NPV analysis often requires trading-off the needs of one master over that of the other. This trade-off is neither right nor wrong; it is simply a reality.
Major miners now seem to have a third master; i.e large pension funds. These funds are now demanding for more sustainable mining practices (mainly tailings related) and mining companies are trying to comply. Smaller mining companies thus far don’t have this third master to satisfy, although that may come soon. Hence smaller miners are apt to follow a somewhat different path with regards to sustainable mining implementation. NPV plays a significant role in their decision making.

NPV…friend or foe

executive meetingThere are several scenarios where NPV analysis decision making may conflict with the objectives of sustainable mining. Here are a few examples.
1. Minimizing capital expenditures at the expense of operating costs. The likelihood of success in creating a long life sustainable mine will improve by having low metal cash costs. Naturally there will be a benefit in having low operating costs. However sometimes achieving low operating costs will require higher capital investments. For example, this could involve using large capacity material handling mining systems (IPCC) to lower unit costs.
NPV analysis will tend penalize these large investments by discounting the future operating cost savings. Being in the lowest cost quartile is good thing; being in the highest cost quartile isn’t.  Higher operating costs can hurt the long term sustainability of an operation, especially during downturns in commodity prices.
2. Tailings disposal method trade-offs are affected by NPV analysis. Currently there is an industry push towards safer and sustainable tailings storage methods, like paste or dry stack. However the upfront processing and materials handling capex can be significant. Hence less desirable conventional style tailings disposal may often be the winners in tailings trade-off studies due to NPV.
3. Closure considerations incorporated in the early mine design stage are affected by NPV analysis. A large cost component of mine closure is related to waste rock and tailings reclamation. However since final closure costs are  deferred, they might be given less consideration in the initial design. In many studies, high closure costs can be deemed insignificant in the project NPV due to discounting. Eventually these high costs will need to be incurred.  Unfortunately they might have been mitigated by wise decision making earlier in the project life.
4. Low grade ore stockpiling can help to increase early revenue and profit, thereby improving the project NPV and payback. Stockpiling of low grade and prioritization of high grade means that lower grade ore will be processed in the later stages of the project life.  Who hasn’t been happy to develop a mine schedule with the grade profile shown on the right?
If low grade years are coupled with a dip in metal price cycles, the mine could become economically unsustainable.  Shutting down a mine and putting it on “care and maintenance” is short term in intention but often long term in duration (over 30 years in some cases).
Mark Bristow of Barrick briefly discussed the issue of high grading in this interview.
5. Low strip ratios in the early stages of a project are often a feature of the ore body itself. However mine plans can also be designed to defer high strip ratios into the future via the use of proper pit phasing. This is another way to defer operating costs into the future. The NPV will see the benefit, long term sustainability may not.
6. Project life selection based on NPV analysis may not show significant economic difference between a 15 year project and one with a life of 25 years. Project decisions could then favor a short life project. This could relate to smaller pit pushbacks, smaller tailings ponds, smaller waste dumps, and easier permitting.  Possibly the local community would prefer a long life project that provides more sustainable jobs and business opportunities. NPV may see it differently.
7. Accelerated depreciation, tax and royalty holidays are types of economic factors that will improve NPV and early payback. They are one tool governments use to promote economic activity. These tax holidays will greatly enhance the NPV when combined with high grading and waste stripping deferral.
Unfortunately reality hits once the tax holiday is over and suddenly taxes or royalties become payable. At the same time head grades may be decreasing and strip ratios increasing. Future cashflows may carry an additional economic burden, which may conflict with the goal of a sustainable mine.

Conclusion

NPV is one of the standard metrics used to make project decisions. The deferral of upfront costs in lieu of future costs is favorable for cashflow and investor returns. Similarly, increasing early revenue at the expense of future revenue does the same.   Both approaches will help satisfy the financing concerns. However they may not be advantageous for creating long term sustainable projects.
Riskier projects will warrant higher discount rates.  This can magnify the importance of early cashflows even more and future cashflows become even less important.
It will be interesting to see how we (the mining industry) respond as industry leaders make greater commitments to sustainable mining. Both majors and juniors will equally need to work on keeping those commitments.  Will NPV analysis help or hurt?

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.  Follow us on Twitter at @KJKLtd for updates and insights.
Share

43-101 Reports – What Sections Are Missing?

Recently as part of a due diligence I was reviewing a couple of 43-101 technical reports and something jumped out at me. There were pages and pages of statistical plots. The plots included QA/QC and check assay diagrams, variograms, box plots, swath plots, and contact plots. There was no lack of statistical information. However, as a mining engineer, there was something missing that was of interest to me. Good geological sections were missing.
Its seems that most technical reports focus heavily on describing the mathematical aspects of the resource, but spend less time describing the physical aspects of the geology and the mineability.

Who is the audience

It’s always open to debate who these 43-101 technical reports are intended for. Generally we can assume correctly that they are not being written mainly for geologists. However if they are intended for a wider audience of future investors, shareholders, engineers, and C-suite management, then (in my view) greater focus needs to be put on the physical orebody description.
Understanding the nature of the orebody brings greater understanding of the entire project.

Everyone likes geology

Whenever I listen to investor conference calls, many of the analyst’s questions relate to the resource and the mining operation. Essentially the participants want to know if this will be an “easy” mine or a “hard” mine.
One simple way to explain this is with good geological sections. They help everyone understand any potential issues; i.e. a picture is worth a thousand words. Good cross-sections will describe the following aspects.
  • The complexity (or simplicity) of the ore zones,
  • The width of the ore zones,
  • The vertical extent of geological information,
  • The drill spacing and drilling density,
  • The spatial distribution of assay information,
  • The grade distribution laterally and vertically,
  • The waste distribution throughout the mine,
  • The mining block size in relation of the ore zone dimensions
One can learn a lot just by looking at well presented cross-sections.  The nice thing is that they are generally understood by non-technical people.

Suggestions

I would like to suggest that every technical report includes more focus on the operational aspects of the orebody.
My recommendation is that the following information becomes standard in all technical reports.
  1. At least three to five cross sections through the deposit. Don’t just present a best case typical cross-section.
  2. At least one or two longitudinal sections.
  3. At least three level or bench plans, showing the drill hole pierce points.
Each cross section/bench plan should consist of two parts.
Part 1 shows the drill holes with color coded grade intercepts, ore zone wireframes, and lithology or rock types.
Part 2 should be a block model cross section showing the wireframes, drill holes, and color coded block model grades using the ore/waste cutoff grade as one of the clearly defined grade bins.
It doesn’t really matter if the cross- sections are included in Section 14 or Section 16 of the Technical Report. However if they are included in Section 16 then one should overlay the pit design and/or underground stope shapes onto the sections.
I also recommend NOT incorporating these cross-sections in the appendices since they are too important to be hidden away. They should be described in the main report itself.

Conclusion

Improving the quality of information presented to investors is one key way of maintaining trust with investors. Accordingly we should look to improve the description of the mineable ore body for everyone. In many cases it is the key to the entire project.
I am not suggesting that one needs to remove the statistical plots since they do have their purpose and audience. I am simply suggesting that we should not forget about everyone else try to figured out the viability of the project.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
For those interested in reading other mining blogs, check out the Feedspot website at the link below. They have over 50 blog sites you check out. https://blog.feedspot.com/mining_blogs/
Share

43-101 and the Shrinking Feasibility Study

There is current sense that advanced mining studies are suffering from a lack of credibility with investors. Curiously it seems to me that many feasibility study documents are getting smaller at the same time. Might there be some link between the two?
My personal exposure to feasibility studies extends from managing them, participating in them, and undertaking due diligence reviews of them. Earlier in my career mining feasibility studies typically consisted of comprehensive documents, often contained in several binders of information. The study could generate a lot of paper. However currently it seems that often (not always) the 43-101 Technical Report can be the “final” feasibility study document.
In the past there would be binders with detailed calculations and backup for the different parts of the study. Typically there was a binder for the Executive Summary and separate sections (i.e. binders) for Geology, Mining, Processing, Infrastructure, Capital Cost, Operating Cost, Environmental, Project Execution, and Economic Analysis, etc.
The comprehensive report normally had both the report text and the details of the work done. This might include hand sketches, haul cycles, vendor price quotes, spec sheets, email correspondences, the WBS cost estimate detail, and so on.
The section appendices also included 3rd party reports like pit slope geotechnical studies, hydrogeological analysis, tailings dam designs, etc. The feasibility document might have included CD’s with the entire study in electronic format.
Generally all the supporting information for the study was in that comprehensive document. They were great. You knew you were somebody if you were given a personal copy of the entire report for your office.

43-101 Technical Report

The original intent of the 43-101 Technical Report was for it to be a summary document, only about 80-150 pages in length. The intent was to simplify all the technical work for the benefit of non-technical investors. Currently I have noticed that in many cases the 43-101 report is now the entire feasibility study document.
These 43-101 reports contain a fair amount of detail and they can exceed 400 pages in length. I’m not sure how many non-technical people actually read them beyond the Executive Summary or even read them at all.
Unfortunately if one is undertaking a due diligence review of a project, the 400 page Technical Report won’t contain the detail needed for a proper technical review. When more detail is requested, we are usually provided with a series of production and cost spreadsheets that need to be deciphered.  Furthermore the spreadsheets themselves don’t give the sources or basis for all the input data.
In my view the 400 page Technical Report is too confusing for the investing public and not detailed enough for technical review, thereby really satisfying no one.
Why aren’t the comprehensive feasibility study documents being completed all the time? I would suggest it is because of the effort and cost. It takes time to properly document all aspects of a study, creating legible tables, scanning files, and merging it all into a single PDF document. Preparing a 43-101 Technical Report can be a chore, as many of us have experienced in trying to meet the 45 day deadline. So who wants to take on the task of preparing an even larger document?

Recommendation

My recommendation is that, where budgets permit, mining companies return to the days of preparing the comprehensive feasibility study document. It’s the right thing to do.
One doesn’t need to print the entire report on paper since PDF files will work fine. Scanning of some sketches, vendor quotes may add an extra step, but that is hardly a momentous chore. Most 3rd party documents are already been submitted in PDF format so coordinating and merging will be the main task.
The 43-101 Technical Report could return to being a more investor friendly summary style document rater than a full study report.
This comprehensive document approach would apply to both pre-feasibility and feasibility studies that are used for advanced financing purposes.  The re-adoption of the comprehensive report format should be consistent among both large miners and juniors.

What about the PEA

The preliminary economic assessment (PEA) likely does not warrant a comprehensive report. The PEA is not definitive. I have also heard that the PEA is losing some credibility with investors, with some people referring to it as mainly a sales document. I don’t necessarily agree with that sentiment, but I understand why some see it that way.
As an aside, an interesting panel discussion might be whether the PEA has actually lost credibility, and if so, how can we restore credibility. My thoughts on PEA’s were summarized in a previous blog “Not All PEA’s Are Created Equal”.

Conclusion

If any mining industry credibility has been lost, re-establishing it should be important. One way to start doing this is to focus on creating the type of reports that best serve the needs of the industry stakeholders.
Some may say returning to comprehensive reports are a step backwards while mining needs to move forward. In my opinion, moving forward is going from less documented studies towards well documented studies.
One of the most technically detailed feasibility studies that I worked on was for the Diavik diamond project. This was a one-of-a-kind project operated by a well run risk-averse company (Rio Tinto). Every aspect of the project was documented to the upmost extent, although the company had the deep pockets to do that.  Funny thing though, as part of the internal Rio Tinto engineering team I don’t recall ever producing a final report document there (perhaps my recollections have been blurred since 20 years ago).
Once you have established the type of report you want, make sure your consultants clearly understand the expected deliverable. I recommend that someone on your team prepares an RFP document to lay out your wish list, even if sole sourcing the study. A previous blog was written on this topic at Request For Proposal (“RFP”) – Always Prepare One
As an aside, it would be interesting to know if those undertaking due diligence’s in the UK or Australia (i.e. not under 43-101 domain) have seen any changes in the quality of feasibility study documentation.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
For those interested in reading other mining blogs, check out the Feedspot website at the link below. They have over 50 blog sites you check out. https://blog.feedspot.com/mining_blogs/
Share

Power Generation & Desalinization – An Idea that Floats

Access to a fresh water supply and a power supply are issues that must be addressed by many mining projects. Mining operations may be in competition with local water users for the available clean water resources. In addition, the greenhouse gas emissions from mine site power plants are also an industry concern. If your project has both water and power supply issues and it is close to tidewater, then there might be a new solution available.
I recently attended a presentation for an oil & gas related technology that is now being introduced to the mining industry. It is an innovative approach that addresses both water and power issues at the same time.
The technology consists of a floating LNG (liquefied natural gas) turbine power plant combined with high capacity seawater desalinization capabilities. MODEC is offering the FSRWP® (Floating Storage Regasification Water-Desalination & Power-Generation) system.
MODEC also has associated systems for power only (FSR-Power®) and water only (FSR-Water®)

FSRWP capabilities

The technology is geared towards large capacity operations that have access to tidewater. It provides many tangible and intangible operational and environmental benefits.  It can:
  • Generate fresh water supply (10,000 – 600,000 m3 /day)
  • Generate electrical power (80 to 1000 MW) using LNG
  • Can provide power inland (>100 km) from a tidewater based floating power plant
  • Can provide natural gas distribution on land via on-board re-gasification systems
  • Has LNG storage capacity of 135,000 cu.m
  • Has a refueling autonomy of 20 to 150 days
  • Allows low cost marine delivery of bulk LNG supply

Procurement & Application

The equipment can be procured in several ways. For instance it can be contracted as an IPP (Independent Power Producer), purchased as an EPCI (Engineering, Procurement, Construction and Installation), BOO (Build, Own and Operate) or BOOT (Build, Own, Operate and Transfer).
Typically it takes 18-24 months of contract award to deliver to the project site, although temporary power solutions can be provided within 60-90 days.
From a green mining perspective, the FSRWP produces clean power with the highest thermal efficiency and lowest carbon foot-print.
See the table for a comparison of different power generation efficiencies and carbon emissions per kW.
Gas turbines are not new technology to MODEC.  They currently own & operate 42 such generators, which can produce roughly 43 MW (each) in combined-cycle mode.

Mooring options

Currently there are three mooring options for the floating system that should fit most any tidewater situation.
Jetty or Dolphin mooring is suitable for protected areas or near-shore applications where the water depth is in the range of 7 to 20 meters.
Tower Yoke mooring is ideal for relatively calm waters where the water depth is between 20 to 50 meters.
External Turret mooring is similar to a Tower-Yoke and is ideal for water depths exceeding 50 meters or where the seabed drops off steeply into the ocean.

Power transmission

Twenty years ago it was impractical to transmit AC power long-distances and subsea power cable technology was not as advanced as it is today. Hence an offshore power plant like a FSRWP was not technically viable. Due to R&D efforts over the last 15 years it is now possible to economically transmit AC. For example it is possible to transmit up to 100 MW over 100 miles through a single subsea cable. In addition, it is also viable to transit 200 MW at 145 kV from a vessel to shore.

Water treatment

Modern FSRWP’s use reverse osmosis membrane technology to produce industrial or potable water.  This is similar to most conventional onshore desalination plants.
The main benefits of floating offshore desalination are increased overall thermal efficiency if both power and water production are combined on a single vessel. In addition, seawater sourced offshore and rejected brine discharged offshore minimizes risk to coastal marine life.

Conclusion

The bottom line is that if your mining project is near shore, and has both water supply and power issues, take a look at the FSRWP technology. One might say it is greener technology by using LNG (rather than coal, heavy fuel oil, or diesel) to generate power.  At the same time it avoids competition with locals for access to fresh water.
This technology won’t be suitable for all mining situations, but perhaps your mine site fits the model. Reportedly rough costs for power are in the range of $0.10-$0.14/kwh with a capital cost of $1M-$1.5M per MW.
There will be minimal closure costs associated with dismantling the power plant.  One just floats it away at the end of the mine life.
Check out the MODEC website if you wish to learn more: https://www.modec.com/fps/fsrwp/index.html
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
For those interested in reading other mining blogs, check out the Feedspot website at the link below. They list 60 mining related blog sites that you check out. https://blog.feedspot.com/mining_blogs/
Share

Flawed Mining Projects – No Such Thing as Perfection

Recently I read a post on LinkedIn where somebody was asking what key metrics companies are looking for in order to develop (or provide financing to) a new mining project. It’s more than just a project having a good NPV or IRR.  They are also looking at how difficult it is to achieve the targeted NPV.
Mining companies are always on the hunt for new projects to grow their cashflows. They would all like to find the “perfect” project; one with ideal conditions and great attributes.
However those perfect projects likely don’t exist anymore, if they ever even did.
Consequently companies must be willing to accept some potential flaws (or risks) in their go-forward projects.
The question is what flaws are they willing to accept and how far away from the ideal situation are they willing to go.

What makes a perfect project?

If one could envision a perfect mining project, what might it look like?   Here are some attributes that one would want to see (in random order). If a project had 100% of these, it would be a fantastic project.
    • A high grade ore orebody
    • A large reserve and long mine life to ride out commodity price cycles
    • Low operating cost
    • Low cash cost, in the bottom quartile of costs
    • Well defined ore zones, allowing simple mining with low dilution
    • A geotechnically competent rock mass
    • Clean and straightforward metallurgy
    • Consistent and straightforward permitting regulations
    • A stable government and stable fiscal regime
    • Safe security conditions for site personnel
    • High NPV and high IRR
    • No acid runoff issues from waste products
    • Stable tailings disposal conditions
    • Readily available local workforce / local power supply / good water supply
    • Favorable local community and stakeholder support
Other readers may have more attributes that they would like to see if asked to theorize “What constitutes a perfect mining project?”

Take off the promoter hat

backhoe on soft claysNow take an honest look at some recent (or past) projects that you have been involved with. How many of the perfect attributes listed above would be represented? It would be surprising to see them all checked off. Unfortunately that means certain flaws (risks) must be accepted when developing a project.
Each company (or financier) will have their vision as to which attributes are “must have” and which ones are “nice to have”.

But we have risk tools

There are many risk tools available to help in evaluating the potential flaws in a project. Unfortunately these tools don’t make the decisions for management.
Risk based Monte Carlo analysis requires management to pre-define the magnitude of the risks and then decide upon what probability of success is acceptable. Real option analysis or decision trees or Kepner-Tregoe are examples of other tools that can help in the decision making process.
Ultimately risk is risky.  Management must make the go/no-go decision regardless of how many probabilistic histograms and tables they have generated. A 90% chance of success still means there is a 10% chance of failure. The probability of failure may be low, but it is not zero.
It would be interesting to examine recent failed projects to define the cause(s) of failure. One could then see if the cause was something that was pre-determined as a risk, either as a small risk or a large risk. Perhaps the cause was something that management felt could be mitigated or perhaps it was something viewed as highly unlikely. No doubt that successful projects also had risks, which were either mitigated or which (luckily) never occurred.

Conclusion

The bottom line is that management understandably have a difficult task in making go/no-go decisions. Financial institutions have similar dilemmas when deciding on whether or not to finance a project.
In my career I have sat in on such management discussions and it’s never been a simple process, mainly because no project is perfect. Management know all the flaws (at least they think they do) and thus have to decide whether to push forward knowing the flaws exist.
I fully expect that future mining project risk will increase due to the complexity of project designs and broadening of stakeholder dynamics. Hence decision making in the mining industry isn’t going to get any easier regardless of the decision tools being used.  Look at your own situation, are your projects getting easier or harder?
One should examine the impact of the project flaws on the project economics.  The most common way to do this is the sensitivity chart (i.e. spider graph).  However this itself is a flawed way to evaluate the flaws.  You can read why at this blog post “Mining Cashflow Sensitivity Analyses – Be Careful“.
A better approach is to use a probabalistic analysis, like Monte Carlo simulation, that can examine multiple factors at the same time.   I discuss the benefits of this approach in a blog post ” Mining Financial Modeling – Make it Better!
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Mining Due Diligence Checklist

It doesn’t matter how long you have worked in the mining industry, at some point you will probably take part in a due diligence review. You might have been asked to help create a data room. Perhaps your company is looking at a potential acquisition. Maybe you’re a consultant with a particular expertise needed by a due diligence team. It’s likely that due diligence has impacted on many of us at some point in our careers.
The scope of a due diligence can be exceptionally wide. There are legal, marketing, and environmental aspects as well as all the technical details associated with a mining project. The amount of information provided can be overwhelming.

Checklists are great

Checklists are great and can be very helpful in a due diligence review. A detailed technical scope checklist is a great way to make sure things don’t fall through the cracks. A checklist helps keep a team on the same page and clarifies individual roles and tasks. Checklists bring focus and minimize sidetracking down unnecessary paths.
Recognizing this, I have created a personal due diligence checklist for these exercises. A screen shot of it is shown below. The list is mainly tailored for an undeveloped mining project still at the study stage, but it still has over 230 items that might need to be considered.

Every mining due diligence is unique

Not all of the items in the checklist are required for each review. Maybe you’re only doing a high level study to gauge management’s interest in a project. Maybe you’re undertaking a detailed review for an actual acquisition or financing event. It’s up to you to create your own checklist and highlight which items need to be covered off. The more items added the less risk of missing something in the end.
You a create your own checklist but if you would like a copy of mine just email me at KJKLTD@rogers.com and let me know a bit about how you plan to use it (for my own curiosity). Specify if you would prefer the Excel or PDF versions.
Please let me know if you see any items missing or if you have any comments.

Due Diligence isn’t for everyone

Mining due diligence exercises can be interesting and great learning experiences, even for senior people that have seen it all. However they can also be mentally taxing due to the volumes of information that one must find, review, and comprehend, all in a short period of time.
Some people are better at due diligence than others. It helps if one has the ability to quickly develop an understanding of a project. It also helps to know what key things to look for, since many risks are common among projects.
Further on the topic of mining due diligence, I have a previous blog post triggered by my frustrations with some poorly set up data rooms.  You can read that at “Due Diligence Data Rooms – Help!”  My request is that when setting up a mining data room, please think about the people who will be using it.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share