Life as an Engineer – Read All About It

One of the interesting aspects of being an engineer in the mining industry is travelling around the globe (or even) around your own country. I have been to over a dozen countries as part of my career and this only makes me a small-time traveller compared to other engineers I know. Travelling and experiencing the world is often part of the job, whether working for a junior miner, a major, a financial house, a consulting firm, or an equipment vendor. It is actually quite difficult to avoid travel if you work in mining.

Diavik Project

Recently a former colleague of mine on the Diavik Diamond Diavik project has published book that describes his life as an engineer. The book is titled Roseway: a Life of Adventure and is available on Amazon.
Its the story of John Wonnacott, a Canadian professional engineer who was involved in the construction of several projects, including the Diavik Diamond mine in Canada, a nickel smelter in China, a gold mine in Brazil, and a titanium mine in Madagascar to list a few.
John has a broad background, having conducted engineering studies in the jungles of Indonesia, the cold of Greenland, the sands of the desert, the heat of Australia, the altitude of the Andes. He has documented his engineering career in his new book.
Disclaimer: I have not yet read the book since it has only recently been published. However John has kindly sent me some excerpts that I have reprinted below to provide everyone with a sense for the content and style.

Some Excerpts

Introduction

At one time or another, I have been a professional paper-boy, forest worker, tree planter, market gardener, food processing equipment operator, lobster fisherman’s helper, commercial dragger deckhand, short-order cook, military engineering officer, computer system installer, greenhouse worker, permafrost researcher, marine oil spill cleanup specialist, pyrometallurgy researcher, garbage landfill operator, project manager, construction company general manager, regional director, open pit diamond miner, underground gold miner, corporate vice-president, design consultant, company owner, private corporation president and for 50 years, a damn good engineer. I have also been happily married to my wonderful wife Carole Anne for more than 52 years and we have 2 outstanding children. So I can add “husband”, “father” and “grandfather” to the list – but making lists like this is boring. Let me tell you my story.

Newfoundland

I remember in the late fall of that year, the company had a chance to bid on a larger project in Gros Morne National Park, Newfoundland. So our President, Frank Nolan (he was a brother to Fred Nolan, the infamous land-owner at Oak Island, by the way), decided he wanted to see the site and he chartered a Bell 106 helicopter to fly us there from Deer Lake. It was December (they say “December month” in that province) and when we got close to the Park, we ran into a sudden snow squall.
From bright sunny weather we were suddenly flying in heavy wet snow. I was sitting in the back of the chopper, with Frank sitting in the left front passenger seat. We were chatting with the pilot, via the radio headsets, when suddenly there was a loud “BEEP BEEP BEEP” sound coming from the front of the aircraft, and a number of the instrument lights started flashing. The engine had cut out – we learned later that wet snow had blocked the air intake and the engine had stalled – and we started descending pretty fast. Most people don’t realize that a helicopter will glide (quite steeply, at a glide angle of about 10 to 1) provided the pilot gets the torque off the rotor and he makes the correct feathering adjustments.
Our pilot did that instinctively and when we passed through the squall he calmly explained to us what was happening as he looked around for an open, flat spot to land. We didn’t have many options as we were flying over a densely wooded forest, with the mountains of Gros Morne and a deep fiord up ahead. But the pilot spotted a snow-covered frozen bog that was not a lot bigger than the helicopter and he put us down there as smoothly as if the engine hadn’t stopped. Maybe the deep snow cushioned our impact, because I felt nothing. But the instant we landed, Frank Nolan wrenched his door open, and he bolted out of the machine, straight ahead, in front of us.
The rotor was still spinning rapidly, and just as Frank ran ahead, the chopper settled further into the snow, tilting the machine forward in the process. With the chopper blades almost skimming the top of the snow, both the pilot and I expected Frank to be cut into pieces by the rotor, but he was just past their reach and he ran on, unaware of his narrow escape. When the spinning parts stopped, the pilot and I climbed out of the chopper to catch up with Frank. Examination of the machine showed us how the snow had plugged the air intake. The pilot cleared away the snow, and walked around the chopper once and then we took off again. We continued our aerial inspection of the National Park project and later that afternoon we flew back to Deer Lake.

Madagascar

The QMM field office In Port Dauphin, Madagascar was located near the edge of town, and I typically walked from my lodging to the office each morning when I was there, about the time when school started for the children. Typically I passed dozens and dozens of tiny bamboo huts with corrugated metal roofs, and dirt floors each about 2 meters square.
I was constantly amazed by the flocks of young boys and girls walking to school – each child aged from 6 to 15 years old, I suppose – dressed in immaculate white shirt or blouse and blue shorts or skirts. I never saw a dirty child, and how they could have kept clean clothes while living in those small crude huts was something I never could figure out. Even more amazing, were the genuine, wide smiles and frequent greeting as we passed the children: “bonjour monsieur, bonjour monsieur”.
It brings tears to my eyes even now, thinking about those children. If they were girls, they could look forward to a life expectancy of 48 years, according to the town officials we talked to. If they were boys, they could expect to live to an age of only 40 years. The perils of fishing in the ocean in dugout canoes made life even harder for the men.
The next morning, we arrived at the Astana international airport, to find that the check-in arrangements were quite different from what we were used to. Instead of checking our luggage at a desk and then walking through Security to get to our departure gate, everyone was expected to wheel their luggage and handbags through security, as the airline check-in desks were located inside.
The mechanics of rustling our luggage weren’t difficult, but as I passed through the check-point, suddenly a strange-sounding alarm went off. As the alarm rang and rang, my mind raced – what did I have in my bag that would trigger the alarm, I wondered? It didn’t help that the Security guards only spoke Russian, and they were dressed in military uniforms with ridiculously large military caps, which made them look imposing (and silly). But what began to worry me more, was that the look on the Security guards’ faces was not the usual one that happens when a piece of metal sets off an alarm. The guards looked frightened and angry, at the same time.
Fortunately for us, the commotion caught the attention of the clerks at the Turkish Airlines desk inside the terminal building, and one English-speaking fellow approached, speaking to the security guards in Russian first, then saying to us: “I speak English, may I help”? Well, he helped, but it took a while, because it turned out that a rarely used hidden nuclear radiation detector had been triggered when I came through the gate, and the guards were concerned that I had some kind of radioactive material in my suitcase.
For a moment my mind went blank, and then I remembered a card that I was carrying in my wallet. I had had a bout of prostate cancer the previous fall, and my brachytherapy treatment had involved inserting over a hundred tiny radioactive pellets in and around my prostate – designed to kill the cancer. The pellets decay naturally in a fairly short time, and by now, 9 or 10 months after my operation, I would have bet that the radioactive material had all decayed to an undetectable level. But my doctor had given me a card to carry, which explained the medical procedure, just for circumstances like this. When I pulled out the card, it was like a “Get out of Jail Free Card” from the Monopoly game. Instantly the guards’ attitudes changed from fear and suspicion, to sympathy and smiles. One of the big fellows wheeled my luggage over to the Turkish Airlines desk where the Good Samaritan clerk reverted back to his normal job of checking us in.

**** end of excerpt ****

Conclusion

It is one thing to briefly visit a remote project as part of a review team. It is another thing to be there as part of a design team trying to solve a problem and engineer a solution. I know of many engineers and geologists that would have similar work life experiences as part of their careers. However John has taken the initiative to write it all down.
The author is available to be contacted on LinkedIn if you have any questions or just want to say hello (at https://www.linkedin.com/in/john-wonnacott-84aa461a/).
The book can be found on Amazon at this link: Roseway: a Life of Adventure.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and other mining posts.
Share

Clays and Mining – Friends or Foes?

Overburden is a generalized termed used to describe unconsolidated material encountered at a mine.  It can consist of gravels, sands, silts, and clays and combinations of each. Usually overburden is not given much focus in many mining studies. Very often, the overburden as a unit, is not adequately characterized.
This blog will explain why proper characterization can be an important issue,  particularly the clay component.
I also want to share some personal mining experiences with clays, all types of clays.  There is more to them than meets the eye; a fact often not apparent to those involved only in hard rock mining.
Clays have unique geotechnical properties that can make for challenging situations and require special consideration in project design.   Many simply view clay as a sticky cohesive material – no big deal. So let’s examine this a bit further. I tried to avoid geotechnical lingo where possible, since this blog isn’t being written for geotechnical engineers.
There are several types of clays, or clay-like materials that can be encountered in mining. Here are the ones that I have been lucky (or unlucky) enough to have dealt with over the years.
  • Normally consolidated clays
  • Over-consolidated clays
  • Sensitive (or quick) clays
  • Swelling clays
  • Saprolite clays
  • Kimberlite clays (muds)

What are the challenges?

Each of the clays listed above can be found in different locations, have unique properties, will behave differently, and can create specific mining challenges.   Clays can also cause problems in process plant circuits, but that is a subject outside my area of expertise.

Normally consolidated clays

These are the clays most people are familiar with, i.e. a sedimentary deposit of very fine particles that have settled in a calm body of water.   Normally consolidated clays are generally not a problem, other than having a high moisture content.  As such, they can be very sticky in loader buckets, truck boxes, and when feeding crushers.
When wet, they can become sloppy and difficult to handle efficiently.  They can creep and run when placed into waste dumps.  For these reasons, engineers must be aware if a large proportion of the overburden will consist of clays so they can avoid surprises.

Over-consolidated clays

These clays have undergone greater vertical compression in their history than in their current condition.  For example, perhaps they were once pre-loaded and compressed by a mile of glacial ice sheet during an ice age, which has subsequently melted.
Clays in general consist of very fine plate like particles, as shown in this sketch.   In over-consolidated clays, these particles have been flattened and tightly compressed as in the right image.   The result is that the clay may be dense, have a good cross bedding shear strength, but very low shear strength along the plates.  This characteristic is analogous to the lubricating properties of graphite, which is facilitated by sliding along graphite plates.
My experience in working with over-consolidated clays was at the Fort McMurray oil sands mining operations.  In that region the Clearwater clays formed part of the overburden sequence above the oil sands.  Stripping these clays with trucks and shovels was not exceptionally challenging.  They had low moisture content and were stiff.   The challenge really came when needing to build on top of them, for example building a waste dump or tailings dam.
The cross-bedding shear strength was good, with peak friction angles exceeding 25 degrees.  However after any creep or deformation, the peak shear strength was gone and the residual friction angle would now control stability.   The residual friction angles could drop as low as 6 degrees (very weak) and, upon surcharging the clay could maintain high internal pore pressures.   Due to these factors it was not uncommon to see tailings dams or waste dumps with 15:1 (H:V) downstream slopes.  This compares to the 3:1 slopes one may normally see at hard rock mine sites.
Building a 15:1 dam or dump is much less volume efficient than building a 3:1 embankment.  It also doesn’t take much instability to cause an embankment to creep along a foundation with only a 6-degree friction angle.  Hence the over-consolidated clays presented a unique engineering challenge when working in the oil sands.

Sensitive (quick) clays

Referring to the clay particle sketch shown above, quick clays represent a card house structure (on the left image).  These clays were often deposited in a quiet marine environment, where electrical charges prevented the clays from settling uniformly.  Instead, the clay particles tend to stack up like a house of cards.  The large void spaces are filled with water, whereby moisture contents can exceed 100% by weight.
When these clays are disturbed by vibration or movement, the house of cards structure collapses.  Combined with the excess void water, these clays will flow…. and flow a lot.   This video shows a slope failure in quick clays in Norway.  Try to stop that failure once it has initiated.
My experience with sensitive clays was at the former BHP bauxite mining operations along the northern coast of Suriname.   There were Demerara clay channels up to 20m thick over top of many of their open pits.   The bucketwheel excavators used for waste stripping would trigger the quick clay slope failures, sometimes resulting in the crawler tracks being buried and unfortunately also causing some worker fatalities.
I recall walking up towards a bucketwheel digging face as the machine quietly churned away.   About 70 metres from the machine, we would see cracks quietly opening all around us as the ground mass was starting to initiate its flow towards the machine.   Most times the bucketwheel could just sit there and dig.  Instead of the machine having to advance toward the face, the face would advance towards the machine.
To address the safety issue, eventually mine-wide grids of cone penetration tests were used to define the Demerara clay channels.  Dredges were then brought in to remove these channels before allowing the bucketwheels to strip the remaining sands and normally consolidated clays.

Swelling clays

In some locations, mines may contain swelling clays.  The issue with these clays is that they can absorb water rapidly, swell by 30%, and become extremely soft to operate on.  If they form part of the ore zone and find their way to the tailings pond, one may find they don’t want to settle out in the pond. Water clarification and clean water recycle to the plant can become an operational issue.   Mineralogy tests will indicate if one has swelling clays (smectites, montmorillonites, bentonite).  The swelling clays do have a functional use however, discussed later.

Kimberlite clays (muds)

The formation of the diamond deposits in northern Canada often involved the explosive eruption of kimberlite pipes under bodies of water. The lakebed muds and expelled kimberlite by the eruption would collapse back into the crater, resulting in a mix of mud and kimberlite (yellow zones in the image).   This muddy kimberlite could be soft, weak, and difficult to mine with underground methods.
Normally as one descends deeper into the kimberlite pipe,  the harder primary kimberlite dominates over the muddy material.   An upside is that the muddy kimberlite can be scrubbed fairly easily during processing, with the very fine clay particles being washed away.

Clays can’t be all bad?

Encountering clays at a mine site can’t be always negative?  There must be some benefits that clays can provide?   Well there are a few positive aspects.

Saprolite clays 

At many tropical mining operations (west African gold projects for example) the upper bedrock has undergone weathering, resulting in the fresh rock being decomposed into saprolite.  This clay-rich material can exceed 50 metres in thickness, can be fairly soft and diggable without blasting.   This is an obvious mining cost benefit.
As well, grinding circuits can easily deal with saprolite.  For example, if a 1000 tpd grind circuit is designed for the underlying deeper bedrock, it may be able to push through 1400 tpd of saprolite.   This would yield a 40% increase in mill throughput for little added cost.  This will boost early gold production.  However as the blend of saprolite to fresh rock declines over the years as the pit deepens, the plant throughput will decrease to the original design capacity.
One concern with saprolite sometimes is its sticky nature.   A truck load of saprolite ore dumped on a crusher grizzly may just sit there.  Possible some prodding or water flushing may be required to get it moving.  Nevertheless, this is normally an easily resolvable operating issue.

Clay core dams

One of the ways miners build water retention or tailings dams is to use mined waste rock.   The issue with this is that a dam built solely with waste rock will leak like a sieve, which can lead to piping failure.  One solution is to build an internal clay core in the center the dam to act as a seepage barrier.   Having on-site access to good quality clean clay fill is a benefit when such dams are required.   If the clay fill isn’t available at site, then more complex synthetic liners or internal seepage control measure must be instituted.
Compacted clay fill can also be used as a pond liner material for water retention ponds.
One can also purchase rolls of geosynthetic clay liners (GCL), whereby a thin layer of dried swelling clay is encapsulated between two sheets of geotextile.  Once the liner is laid out and re-hydrated with water, the clays swell and will act as an impervious liner.   The installation approach is somewhat simpler than for HDPE liners and such liners can be self-healing if punctured.  A downside is that the transport weight of these GCL liners can be significant.
See, there are some positives with having clay at site.

Conclusion

All clays are not the same.  The mining of clays can create unique challenges for mining engineers and operating personnel.   Whenever I see study happily mention that their open pit mine waste consists of “free digging overburden”, I say to myself “Be careful what you wish for”.
One must ensure that the overburden is properly characterized, even though it may be viewed as an unimportant or uninteresting material.  Determine whether it consists of gravels, sands, silts, tills, or clays, or combinations thereof.   It can make a big difference in how it is mined, disposed of, and whether it can have any secondary uses on site.  In many studies that I have reviewed, the overburden tends to be forgotten and does not get the technical respect it deserves.
Please feel free to share any thoughts on your experience in working with clays.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.   Follow me on Twitter at @KJKLtd for updates and other mining posts.
Share

A Junior EIT Mining Story

We know the mining industry is having trouble attracting talent in all sorts of disciplines, including operations, technical, and supervision. Industry people have no shortage of ideas (right or wrong) on how this issue can be addressed in the future. Myself…I don’t really have any good suggestions.
Not long ago I was speaking with a 2020 graduate mining engineer (EIT = Engineer in Training). During our conversation, I was curious to know what attracted him to the industry and if he had any advice on how to reach out to others in his age group. I asked if he was willing to share his thoughts on my blog site. After all, who better to hear from than a recent graduate. He said “yes”, so for your interest, here is his story and his thoughts. (I decided to leave his name out of this article although he was not insisting on anonymity.)

So here’s the story (in his words)

Mining has been a part of my life for as long as I can remember. Being born in Sudbury, many of my family members have been, or are currently involved, in mining through a variety of occupations, including my father who I idolized. However, I never knew my true interest in the industry until my 11th-grade technology class. I had a teacher who was passionate about the mining industry, and he created a project that involved developing a very basic mine design.
Once I started the project, I realized that I enjoyed the design work, as it requires problem-solving which constantly stimulates the mind. After the conclusion of this project, I started doing my own research to expand my knowledge and realized that the financial side of mining had great interest to me as well. This led me at age 16 to start investing in the mining sector, which I continue to this day.
With this developed interest, and my family’s mining history, the decision to study Mining Engineering at Laurentian University was an easy decision. It allowed me to support my hometown and will allow me, given my career ambitions, to put this small school on the international map.
Before my first year of university, I had a summer job tramming at Macassa Mine in Kirkland Lake Ontario, which has been in production since 1933. My mentality was to get the boots on the ground and get the job done, whatever it took (with proper safety precautions of course). Using rail systems, dumping ore cars manually, jackleg drilling, etc. gave me the perspective that mining was archaic, mining was rough, and mining was only about the ounces.
Therefore, when I started the Mining Engineering program at Laurentian University in 2016, I already had a (somewhat negative) preconceived notion of the mining industry, but as my short career progressed, my opinions morphed into something different, something more positive.
Now that I have graduated and been employed for a couple of years, my perspective has changed. However, I feel that the perspective of the general population has not. People within mining have a (positive) bias and realize its importance in our everyday lives. This is showcased in the famous saying “if it is not grown, it is mined” and I believe that to get the industry to progress at an even faster rate, we need to get everyone on board.
It cannot be an industry that just takes from the Earth, it needs to be seen as one that values sustainability, supplies the world with required goods, and creates jobs with high employee satisfaction. Although this has started with companies taking more of an interest in stakeholder value and employee job satisfaction, based on my limited years in the industry, there is still lots of room for growth.
To change the negative view around mining, I believe the main focal point should be electric equipment and the ability for remote operation/work. With all this newly developed technology at our fingertips, I know that future operations will be safer and more sustainable, which should be better portrayed.
The battery-electric equipment will surely increase employee satisfaction since I know firsthand that one of the worst feelings as a worker is to have a scoop operating in a heading that is already 25+ degrees. It will also create more sustainability since the industry can transition from being reliant almost solely on fossil fuels.
In addition, I believe that remote equipment operation is not being used to its full capacity or explained to the younger generation. Right now, there has been equipment running in Canada that was operated in Australia. What is stopping mines from having equipment operators all over the world in urban office spaces or out of their own homes? I believe that for a company to visit a high school, or even a trades school, to sell the idea that you can operate a massive piece of equipment from the creature comforts of home, almost like a real-life video game, would be quite compelling to this audience.
Even creating a mining simulation video game where you can run through a story of being a manager, excavator/scoop operator, truck driver, etc. would get the thought of mining brought into the coming generations at a younger age. This would increase the talent pool from the more typical operator because more and more youth are getting skilled at remote operation through video games due to their increased screen time.
Not only equipment operators, but technical staff could be made fully, or partially, remote. When I describe my job to my (non-mining) peers, many are interested since mining is a fast-paced, stimulating, and rewarding industry.
But as soon as I describe the remote nature of the work, many young professionals, or high school students, get turned away. Therefore, showing teenagers, through school presentations or workshops, that a technical career in mining can lead you down so many avenues (scheduling, ventilation design, drill & blast, etc.) would pique their interest, but I believe adding the ability to work remote, with some occasional travel, would drive the point home.
InternPeople get comfortable and people are afraid to leave home, so selling a career that allows for boundless flexibility in job tasks and constant stimulation while living wherever you desire could allow a shrinkage in the current technical gap.
Overall, the mining awareness and outreach (approach) is still old school. Getting to youth and teenagers through various media streams could be the key to getting engagement from not only the current mining towns but larger urban centres as well.
I mentioned a mining simulation video game previously, but what is stopping us there. Many of my peers, and youth younger than myself, are entering the professions of doctors, lawyers, finance, or criminal investigators.
I might be wrong, but, intriguingly, these are industries are the base professions glorified on TV. Why not develop more TV shows based on mining? I know that there would be some population interest considering many people ask me if the gold we mine underground looks like what comes out of the pans in Yukon Gold Rush.
So do I think the mining industry is archaic…. not anymore.
Do I think the mining industry is rough… somewhat.
Do I think it is only about the ounces…., yes, since a mine will not run any other way.
However, I believe that there has been more importance placed on employee and stakeholder satisfaction. So, with more time, and more engagement from the public of all ages, I think this industry can have a bright future ahead.
END

Conclusion

Firstly, I would like to thank this engineer for taking time to write out his well formed thoughts, and for allowing me to share them.
Many of the mining people I meet are following along in family footsteps. No surprise there. However, the industry cannot rely on that farm system alone. It should be reaching out to broader society, although that may require some out-of-the-box thinking. People’s attitudes and personalities are different today than they were 20 years ago.  Many different doors are being held open as career options.
The discussion above has some interesting ideas from a person who would be the target of outreach efforts. It likely will take more effort than simply telling people “Hey, your iPhone uses metal, therefore mining is good, and you should work in mining”.

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and other mining posts.
Share

Resources, Resources, and Mineral Reserves

Every so often I like to comment on issues related to the way the mining industry does things. This is one of those posts.
Currently the mining industry reports their exploration results as either Mineral Resources or Mineral Reserves. In my opinion, these two categories do not adequately reflect the reality of the current mining environment. I would suggest using a three category approach, as will be described below.
The implementation of this approach would not result in any more technical effort. However, it would provide clarity for stakeholders and investors and compare companies on a more equitable basis.

The issue

In today’s world, it is an onerous task to permit, finance, build, and operate a new mine. This is a significant achievement.
An operating company will be generating revenue and should be recognized for that big step. Hence does it make sense for an operating company to report Mineral Reserves while a junior company that has simply completed a pre-feasibility study to also report Mineral Reserves?
Both companies could report identical Reserves, but those reserves would not be the same thing. One company has built a mine while the other may have spent a few months doing a paper study. One company’s reserves will actually be mined in the foreseeable future while the other company’s project may never see the light of day. Yet both companies are allowed to present the same Mineral Reserves.
As a mine operates, the remaining ore reserves will deplete over time. However, a company can add to their reserves by finding satellite ore bodies or converting inferred material into a higher classification. The net of these adjustments will be reflected in the corporate Mineral Reserve Statement for all their operations.
A company can also increase the corporate Mineral Reserves simply by completing a pre-feasibility or feasibility study on a new project. However, is this a true reflection of the Reserves upon which the company should be evaluated?

Suggestion

I would suggest that the three reporting categories be used instead of two, described as follows:
1 – Mineral Resources (insitu): This category is the same as the current Mineral Resources being reported according to NI43-101. It is based on reasonable prospects for economic extraction. Hence open pit resources would be reported within an optimized shell and underground reserves within approximate stope shapes. No external dilution or mining criteria would be applied, as is the current approach.
2 – Economic Resources: This would be a new category that would simply be the outcome from a pre-feasibility or feasibility study, which is currently being labelled a “Mineral Reserve”. This Economic Resource would incorporate mining criteria, Measured & Indicated classes only, a mine plan, and an economic analysis. The differentiation from Reserves is because the mine is not built yet.
3 – Mineral Reserves: This highest-level category could be reported only once a mine has reached commercial production. The Economic Resources would automatically convert to Mineral Reserves once production is achieved. As the mine continues to operate, and as new ore sources are identified, the Mineral Reserves would increase / decrease. The Mineral Reserves would represent the remaining ore tonnage at operating mines and only that.
This three-category approach would help separate mine operators from junior development companies. The industry should recognize the difference between companies and projects at different life-cycle stages and that they are not all directly comparable. A junior explorer could be reporting huge reserves, but without a mine being there, should that company be compared to a mine operator that has similar reserves?
This approach would identify situations whereby a company suddenly reports a sizeable increase in Reserves. Is it because they found more ore at an existing operation (a great event) or because they did a paper study on a new project?
As a clarification, if a mine gets placed onto care & maintenance, likely due to poor economics, then the remaining tonnes at the mine would no longer be considered Mineral Reserves and may have to revert to Economic Resources, although even that would be questionable.

Examples

Out of curiosity I randomly selected three companies (Yamana Gold, Eldorado Gold, Alamos Gold) to compare their total Mineral Reserve tonnages based on their operations versus study stage development projects. The results are show in the images below. The percentage of Reserves provided by their producing (P) mines varied and ranged from 14% to 51%. A significant proportion of their Reserves (49% to 86%) are still at the development (D) stage. One or two large study-stage projects can boost the corporate reserves significantly. This is not immediately evident when looking at the total Mineral Reserves being reported.
For most junior miners 100% of their Reserves are still at the study-stage. They should not be able to declare Mineral Reserves and appear on an equal footing with mine operators. Their company should only be comparable to other companies with advanced study-stage projects.

Conclusion

The foregoing discussion is a suggestion as to how the mining industry can recognize the achievement and economic reality of building a mine, i.e. by being allowed to report Mineral Reserves. All others only get to report Resources. This would help clarify what long term tonnages are actually being mined versus simply being studied on paper.
The suggested approach does not create additional work for the mining companies. However, it provides a much fairer and transparent comparison between companies.
Interestingly, NI43-101 specifies that one cannot mathematically add together Indicated and Inferred resources because they are view as materially different. However, in a corporate Mineral Reserve Statement one is allowed to combine Reserves at an operating mine with Reserves from a study.  These two reserves, in my view, are even more materially different than Indicated and Inferred resources are.
Its great for a company to report Mineral Reserves from a pre-feasibility study.  However if for some reason that mine never gets built, then those Reserves are valueless. Maybe years ago it was foregone conclusion that a positive feasibility study would result in the construction of a mine, so the risk was less. That is no longer the case and this fact should be recognized when defining and reporting Mineral Reserves.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates.
Share

Let A.I. Help Target Your Infill Drilling

From time to time I come across interesting new tech that I like to share with colleagues.  The topic of this blog relates to solving the problem of defining an optimal infill drill program.
In the past I have worked on some PEA’s whose economics were largely based on Inferred ore.  The company wanted to advance to the Pre-Feasibility (PFS) stage. However, before the PFS could start they would need additional drilling to convert much of the Inferred resource into Measured and Indicated resources.
I’ve seen similar experience with projects that are advance from PFS to FS where management has a requirement that the ore mined during the payback period consist of Measured classification.

The Problem

In both cases described above, it is necessary for someone to outline an infill drill program to upgrade the resource classification while also meeting other project priorities.  The goal is to design an infill drill program with minimal time and cost yet maximize resource conversion.  Possibly some resource expansion drilling, metallurgical sampling, and geotechnical investigations may be required at the same time.
I’m not certain how various resource geologists go about designing an infill drill plan.  However, I have seen instances where dummy holes were inserted into the block model and then the classification algorithm was re-run to determine the new block model tonnage classification.   If it didn’t meet the corporate objectives, then the dummy holes may be moved or new ones added, and the process repeated.
One would not consider such a trial & error solution as optimal. It may not necessarily meet the cost and time objectives although it may meet the resource conversion goals.

The Solution

The DRX Drill Hole and Reporting algorithm developed by Objectivity.ca uses artificial intelligence to optimize the infill drilling layout.  It intends to match the QP/CP constraints with corporate/project objectives.
For example, does company management require 70% of the resource in M&I classifications or do they require 90% in M&I?  Each goal can be achieved with a different drill plan.
The following description of DRX is based on discussions with the Objectivity staff as well as a review of some case studies.  The company is willing to share these studies if you contact them.
The DRX algorithm relies on the resource classification criteria specified by the company QP.  For example, the criteria could be something like “For a block to qualify as Measured, the average distance to the nearest three drill holes must be 30 m or less of the block centroid. For a block to qualify as Indicated, the average distance from the block centroid to the nearest three holes must be 50 m or less. For a block to qualify as Inferred it will generally be within 100 m laterally and 50 m vertically of a single drill hole.
The DRX algorithm will use these criteria to optimize drill hole placement three dimensionally to deliver the biggest bang for the buck.   Whatever the corporate objective, DRX will attempt to find an optimal layout to achieve it.  The idea being that fewer well targeted holes may deliver a better value than a large manually developed drill program.
The DRX outcome will prioritize the hole drilling sequence in case the drill program gets cut short due to poor weather, lack of funding, or the arrival of the PDAC news cycle.
The DRX approach can also be used to optimally site metallurgical holes and/or geotechnical holes in combination with resource drilling if there are defined criteria that must be met (by location, ore type, rock type, etc.).   The algorithm will rely on rules and search criteria developed by experts in those disciplines.  It does not develop the rules, it only applies them.
DRX can also help optimize step-out drilling, such that the step-out distance will not be beyond the range that negates the use of the hole in a resource estimate.  It can also consider geological structure in defining drill targets.

By optimizing the number of drill holes and their orientation, the company may see savings in drill pad prep, drilling costs, field support costs, and sample assaying.
One can even request drilling multiple holes from the same drill pad to minimize drill relocation costs and safety issues in difficult terrain.
A large benefit of DRX is to be able to examine what-ifs.  For example, one may desire 85% of the resource to be M&I.   However, if one is willing to accept 80%, then one may be able to save multiple holes and associated costs.   Perhaps with the addition of just a few extra holes one could get to 90% M&I.   These are optimizations that can be evaluated with DRX.

An Example

In the one case study provided to me, a $758,000 manually developed drill program would convert 96.6% of the Inferred resource to Indicated.  DMX suggested that they could achieve 96.7% for $465,000. Alternatively they could achieve 94% conversion for $210,000.  These are large reductions in drilling cost for small reductions in conversion rate.  This may allow the drill-metres saved to be used for other purposes.
For that same project, a subsequent study was done to convert Indicated to Measured in a starter pit area. DRX concluded that a 5000-metre program could convert 62% of Indicated into Measured.  A 12,000-metre program would convert 86%,  A 16,000-metre program would achieve 92%.
So now company management can make an informed decision on either how much money they wish to spend or how much Measure Resource they want to have.

Conclusion

Although I have not yet worked with DRX, I can see the value in it.   I look forward to one day applying it on a project I’m involved with to develop a better understanding of what goes in and what comes out.   DRX hopes to become to resource drilling what Whittle has become to pit design – an industry standard.
The use of the DRX algorithm may help mitigate situations where, moving from a PEA to PFS, one finds that the infill program did not deliver as hoped on the resource conversion.  Unfortunately, this leaves the PFS with less mineable ore than anticipated and sub-optimal economics.
New tech is continually being developed in the mining industry.  Hopefully this is one we continue to see forward advancement. It makes sense to me and DRX could be another tool in the geologist toolbox.  Check out their website at objectivity.ca
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.   Follow me on Twitter at @KJKLtd for updates.
Share

Mining Financial Modeling – Make it Better!

In my view one thing lacking in the mining industry today is a consistent approach to quantifying and presenting the risks associated with mining projects. In a blog written in 2015, I discussed the limitations of the standard “spider graph” sensitivity analysis (blog link here) often seen in Section 22 of 43-101 reports. This new blog expands on that discussion by describing a preferred approach. A six-year time gap between the two articles – no need to rush I guess.
This blog summarizes excerpts from an article written by a colleague that specializes in probabilistic financial analysis. That article is a result of conversations we had about the current methods of addressing risk in mining. The full article can be found at this link, however selected excerpts and graphs have been reprinted here with permission from the author.
The author is Lachlan Hughson, the Founder of 4-D Resources Advisory LLC. He has a 30-year career in the mining/metals and oil gas industry as an investment banker and a corporate executive. His website is here 4-D Resources Advisory LLC.

Excerpts from the article

Mining can be risky

“The natural resources industry, especially the finance function, tends to use a static, or single data estimate, approach to its planning, valuation and M&A models. This often fails to capture the dynamic interrelationships between the strategic, operational and financial variables of the business, especially commodity price volatility, over time.”
“A comprehensive financial model should correctly reflect the dynamic interplay of these fundamental variables over the company life and commodity price cycles. This requires enhancing the quality of key input variables and quantitatively defining how they interrelate and change depending on the strategy, operational focus and capital structure utilized by the company.”
“Given these critical limitations, a static modeling approach fundamentally reduces the decision making power of the results generated leading to unbalanced views as to the actual probabilities associated with expected outcomes. Equally, it creates an over-confident belief as to outcomes and eliminates the potential optionality of different courses of action as real options cannot be fully evaluated.”

Monte Carlo can be risky

“Fortunately, there is another financial modeling method – using Monte Carlo simulation – which generates more meaningful output data to enhance the company’s decision making process.”
Monte Carlo simulation is not new.  For example  @RISK has been available as an easy to use Excel add-in for decades. Crystal Ball does much the same thing.
“Dynamic, or probabilistic, modeling allows for far greater flexibility of input variables and their correlation, so they better reflect the operating reality, while generating an output which provides more insight than single data estimates of the output variable.”
“The dynamic approach gives the user an understanding of the likely output range (presented as a normal distribution here) and the probabilities associated with a particular output value. The static approach is relatively “random” as it is based on input assumptions that are often subject to biases and a poor understanding of their potential range vs. reality (i.e. +/- 10%, 20% vs. historical or projected data range).”
“In the case of a dynamic model, there is less scope for the biases (compensation, optionality, historic perspective, desire for optimal transaction outcome) that often impact the static, single data estimates modeling process. Additionally, it imposes a fiscal discipline on management as there is less scope to manipulate input data for desired outcomes (i.e. strategic misrepresentation), especially where strong correlations to historical data exist.”
“It encourages management to consider the likely range of outcomes, and probabilities and options, rather than being bound to/driven by achieving a specific outcome with no known probability. Equally, it introduces an “option” mindset to recognize and value real options as a key way to maintain/enhance company momentum over time.”

Image from the 4-D Resources article

“In the simple example (to the right), the financial model was more real-world through using input variables and correlation assumptions that reflect historical and projected reality rather than single data estimates that tend towards the most expected value.”
“Additionally, the output data provide greater insight into the variability of outcomes than the static model Downside, Base and Upside cases’ single data estimates did.”
The tornado diagram, shown below the histogram, essentially is another representation of the spider diagram information. ie.e which factors have the biggest impact.
“The dynamic data also facilitated the real option value of the asset in a manner a static model cannot. And the model took less time to build, with less internal relationships to create to make the output trustworthy, given input variables and correlation were set using the @RISK software options. This dynamic modeling approach can be used for all types of financial models.”
To read the full article, follow this link.

Conclusion

image from 4-D Resources article

Improvements are needed in the way risks are evaluated and explained to mining stakeholders. Improvements are required given increasing complexity in the risks impacting on decision making.
The probabilistic risk evaluation approach described above isn’t new and isn’t that complicated. In fact, it can be very intuitive when undertaken properly.
Probabilistic risk analysis isn’t something that should only be done within the inner sanctums of large mining companies. The approach should filter down to all mining studies and 43-101 reports. It should ultimately become a best practice or standard part of all mining project economic analyses. The more often the approach is applied, the sooner people will become familiar (and comfortable) with it.
Mining projects can be risky, as demonstrated by the numerous ventures that have derailed. Yet recognition of this risk never seems to be brought to light beforehand. Essentially all mining projects look the same to outsiders from a risk perspective, when in reality they are not. The mining industry should try to get better in explaining this.
UPDATE:  For those interesting in this subject, there is a follow up article by the same author published in January 2022 titled “Using Dynamic Financial Modeling to Enhance Insights from Financial Reports!“.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates.
Share

Pit Optimization – More Than Just a “NPV vs RF” Graph

In this blog I wish to discuss some personal approaches used for interpreting pit optimization data. I’m not going to detail the basics of pit optimization, instead assuming the reader is familiar with it .
Often in 43-101 technical reports, when it comes to pit optimization, one is presented with the basic “NPV vs Revenue Factor (RF)” curve.  That’s it.
Revenue Factor represents the percent of the base case metal price(s) used to optimize for the pit. For example, if the base case gold price is $1600/oz (100% RF), then the 80% RF is $1280/oz.
The pit shell used for pit design is often selected based on the NPV vs RF curve, with a brief explanation of why the specific shell was selected. Typically it’s the 100% RF shell or something near the top of the curve.
However the pit optimization algorithm generates more data than shown in the NPV graph (see table below). For each Revenue Factor increment, the data for ore and waste tonnes is typically provided, along with strip ratio, NPV, Profit, Mining cost, Processing, and Total Cost at a minimum. It is quick and easy to examine more of the data than just the NPV.

In many 43-101 reports, limited optimization analysis is presented.  Perhaps the engineers did drill down deeper into the data and merely included the NPV graph for simplicity purposes. I have sometimes done this to avoid creating five pages of text on pit optimization alone. However, in due diligence data rooms I have also seen many optimization summary files with very limited interpretation of the optimization data.
Pit optimization is a approximation process, as I outlined in a prior post titled “Pit Optimization–How I View It”. It is just a guide for pit design. One must not view it as a final and definitive answer to what is the best pit over the life of mine since optimization looks far into the future based on current information, .
The pit optimization analysis does yield a fair bit of information about the ore body configuration, the vertical grade distribution, and addresses how all of that impacts on the pit size. Therefore I normally examine a few other plots that help shed light on the economics of the orebody. Each orebody is different and can behave differently in optimization. While pit averages are useful, I also prefer to examine the incremental economic impacts between the Revenue Factors.

What Else Can We Look At?

The following charts illustrate the types of information that can be examined with the optimization data. Some of these relate to ore and waste tonnage. Some relate to mining costs. Incremental strip ratios, especially in high grade deposits, can be such that open pit mining costs (per tonne of ore) approach or exceed the costs of underground mining. Other charts relate to incremental NPV or Profit per tonne per Revenue Factor.  (Apologies if the chart layout below appears odd…responsive web pages can behave oddly on different devices).

Conclusion

It’s always a good idea to drill down deeper into the optimization data, even if you don’t intend to present that analysis in a final report. It will help develop an understanding of the nature of the orebody.
It shows how changes in certain parameters can impact on a pit size and whether those impacts are significant or insignificant. It shows if economics are becoming very marginal at depth. You have the data, so use it.
This discussion presents my views about optimization and what things I tend to look at.   I’m always learning so feel free to share ways that you use your optimization analysis to help in your pit design decision making process.

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates.
Share

Gold Exploration Intercepts – Interesting or Not?

As a mining engineer, I am not usually called in to review a project that is still at the exploration stage. This is normally the domain of the geologist. However from time to time I have an interest in better understanding the potential of an early stage mining project. This could be on behalf of a client, for investing purposes, or just for personal curiosity.
At the exploration stage one only has drill interval data from news releases to examine. A resource estimate may still be unavailable. The drill data can consist of long intervals of low grade or short intervals of high grade and everything in between. What does it all mean and what can it tell you?
The following describes an approach I use for examining early stage gold deposits. The logic can be expanded to other metals but would take more effort. My focus is on gold because it has been the predominant deposit of interest over the last few years, and it is simpler to analyze quickly.

We All Like Scatter Plots

My approach relies on a scatter plot to visual examine the distribution of interval thicknesses and gold grades. Where these data points cluster or how they are distributed can provide some prediction on the overall economic potential of a project. Its not a guarantee, but only an indicator.
I try to group the analysis into potential open pit intervals (0 to 200 metres from surface) and potential underground (deeper than 200m) intervals. This is because a 20m wide interval grading 2.0 g/t is of economic interest when near surface, however of less interest if occurring at a 300m depth.
Using information from a news release, I create a two column Excel table of highlighted intervals and assay grades. The nice thing about using intervals is that the company has provided their view of the mineable widths. If one is provided with raw 1-metre assay data you would have to make that decision, which can be a significant task. The company has already helped make those decisions.
Normally I tend to use the highlighted sub-intervals and not the main intervals since issues with grade smoothing can occur. A large interval containing multiple high grade sub-intervals may see some grade smoothing. This happens if the grade between sub-intervals is very low grade or even waste. It takes a fair bit of effort to assess this for each drill hole, hence it is easier to work with the sub-intervals. I have an online calculator (Drill Intercept Calculator) that lets you assess if grade smoothing is occurring.
When inputting the interval thickness, I prefer to use the true thickness and not the interval length. If the assay information does not specify true thicknesses, then I simply multiple the interval length by 0.70 to try to accommodate some possible difference in width. Its all subjective.
The assays can consist of Au (g/t) or AuEq (g/t) if more metals are present. If very high grades are encountered (greater than 10 g/t) I simply input 9.9 g/t into the Excel table so they fit onto my scatter plot. Extremely high grades can be sporadic and localized anyhow.
Finally I need to decide whether the project is located in a region of high operating cost, low cost or about average costs. High costs could be with a fly in/ fly out, camp operation, with diesel power, and seasonal access. A low cost operation could be in temperate climate, with good access to local infrastructure, water, labour, and grid power. An average operation would be somewhere in between the two. Its just a gut feel.

Results

The following charts describe how it works, using randomly generated dummy assay data in this example.
In the Average cost scenario (left chart) the points are equally scattered both above and below the Likely Economic line. As one moves to a high-cost situation (middle chart) the curve moves upwards and more drill intervals now fall below the economic line. This would give me an unfavorable impression of the project. The third graph is the Low-Cost scenario and one can see that more assays are now above the line. Hence the same project located in a different region would yield a different economic impression.
The economic boundaries (dashed lines) presented in the plots are based on my personal experience and biases. Other people may have different criteria to define what they would view as economic and uneconomic intervals.

Conclusion

There is not much that a layperson person can do with the multitude of exploration data provided in corporate news releases. However, by aggregating the data one can get a sense of where a gold project positions itself economically. The more data points available, the more that one can gather from the plot.
One should prepare separate plots for shallow and deep mineralization or for different zones and deposits on a property rather than aggregate everything together.
It may be possible to undertake a similar analysis with different commodities if one can summarize the assays into a single equivalent value or NSR dollar value. Unfortunately, exploration news releases don’t often include the poly-metallic interval equivalent grade or NSR value. Calculating these manually would add an extra step in the process, however it can be done.
If you want to try out the concept, I have posted the online spreadsheet to my website at the link Drill Intercept Potential where you can input Au exploration data of interest. Unfortunately, you cannot save your input data so it’s a one time event.   Anyone can do this – its not rocket science.
Let me know your thoughts, suggestions, or other ways to play with news release data.

Great Bear Resources Example

Interesting the Great Bear Resources website allows one to download a data file with all their exploration intervals.  I have not seen another company provide this level of transparency.   I download their data file of over 1300 intervals and sub-divided them into major intervals and sub-intervals (more ore less).   The two plots below show the outcome.
The graph on the left is the sub-intervals showing that many points are above the “economic” line.  There are numerous data points along the top axis, indicating many sub-intervals at >10 g/t at widths ranging from 1 to 15 metres.  The graph on the right shows the major intervals.  While there are still many along the top axis, there are now more along the 40m width but at grades ranging from 1 g.t to 6 g/t.
One would surmise from these plots that overall there are many intervals above the line in the economic zone, showing the potential of the project.  It also shows that GBR have encountered many intervals likely sub-economic, but that’s the exploration game.

Great Bear Resources data

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and insights.
Share

Stories from 3000 Feet Down – Part 2

This is Part 2 of my story about working at a potash mine in Saskatchewan. If you haven’t read Part 1, here is the link to it “Stories from 3000 Feet Down – Part 1“.  It’s best to read it first.

Flooded Russian Potash Mine

As mentioned in Part 1, water seepage and potential leaks were always an operational concern. There were essentially two main fears; (i) that a borer would tunnel into an unforeseen collapse zone (i.e. an ancient sink hole) or (ii) that long term deformations in the mine would result in cracking of the overlying protective salt layer resulting in water inflow.
Any time wet spots were seen on the roof, the mining engineers or geologists were called out to take a look.
Sometimes the wet area was due to pockets of interstitial moisture. Other times it might have just been oil from a blown hydraulic hose on the borer. Wet spots all look the same when covered in dust.
Water ingress was such a concern in that an unmined pillar of 100 ft. would be left around all exploration core holes. These 3,000 ft. holes were supposedly plugged after drilling but you could never be certain of that. Furthermore, you couldn’t be certain of their location at potash depth. Hence, we didn’t want to mine anywhere close to them.
The process plant also had several water injection wells whereby excess water was injected into geological formations deep below the potash level. We left a 700 ft. pillar around these injection wells.
Carnallite is a magnesium salt that we encountered in some areas of the mine. It was weaker than the halite, resulting in more rapid room closure and deteriorating ground conditions. It was also hydroscopic and could absorb moisture out of the air. Sometimes we would water the underground travel ways to mitigate dust issues. With the resulting high humidity sometimes the carnallite areas might start to drip water. This resulted in another call to the engineers to come out and investigate.

Working on a production crew brings new learnings.

My period as a production foreman was great. When first assigned to this role, I was less than enthusiastic but when it was over 6 months later, I appreciated the opportunity. As a production foreman, we had a crew of 15 to 20 people responsible for mining 9,500 tons over a 12 hour shift. There was one foreman in the underground dispatch room and one face foreman travelling around supervising the borers and inspecting conveyors.
Ore grade control was a key responsibility of both the borer operator and mine foreman. The goal for the borer operator was to cut the roof even with the top of the high grade potash bed. The goal for the foreman was to ensure the operator was maintaining his goal. However, when looking at the potash face all the beds generally looked the same, especially when they are dusty.

Feel the glow

One key distinction was that the middle low grade bed had a higher percentage of insol clays. It was used as a marker bed. You would take your hardhat lamp and run it down against the wall. In the upper high grade potash bed, the cap lamp would have a halo, not unlike like the glowing salt rock lamps you see in stores. In the marker bed the halo would disappear, like putting a lamp against a rock wall.
Thus using the lamp you could identify the top of the marker bed, which was supposed to be kept 3.5 to 4 ft. off the floor. If borer operators were consistently more than 12 “ inches off optimal level, they could be written up (i.e. reprimanded). This was one of my tasks as foreman and I always hated doing it.
Lasers were used to guide the borer in a straight line but the marker bed was used for vertical control. Nowadays the use of machine mounted ore grade monitors is an option. By the way, if you’re looking at a potash project, be aware of the grade units being reported. A previous blog discusses this “Potash Ore Grades – Check the Units”.
The underground conveyor network consisted of 32” conveyors, feeding onto 42” conveyors, feeding on to 48”or 54” conveyors. Typically the length of the larger conveyors was in the range of a mile (5,000-6,000 ft.). The conveyors were all roof mounted, allowing for easy clean up underneath. Roof mounting was critical. Even some of the 600 hp conveyor drive stations were roof mounted, structure and all.

Conveyors were the reason for my one and only safety incident.

4-rotor side pass

4-rotor borer side pass

First a little background. The underground ore storage capacity at K1 was about 3,000 tons. If the underground bins were filled anytime during a shift, the entire conveyor system would automatically trip off; all 10 miles of it. If you happened to have a mile long conveyor shut off while it was loaded to the brim with ore, good luck starting it up again.
If this happened, there were two choices. You could bring in the operators from the borers to start shovelling off the conveyor until it was unloaded enough to re-start. This option went over like a lead balloon with the crew.
The other not so great option was to use a scooptram to lift the belt counterweight up to reduce the belt tension. This allows the drive pulleys to start spinning. Then by lowering the counterweight back down perhaps the drives can inch the belt along. The idea being that possibly the momentum of the moving mass of potash would keep it moving. The downside is that you could break the belt. There was nothing worse than having to tell the cross shift they have both a stalled conveyor and a broken belt. Have a good shift people.
At 4 a.m. working as night shift face foreman, I knew the underground bins were nearing full. Driving along I saw that the mainline conveyor was full and spilling over the sides. A worst case conveyor shutdown was imminent. I called the dispatch office to ask why he hasn’t been shutting down borers and conveyors but there was no answer.
After several unanswered calls I started to hustle back to dispatch. I remember driving alongside the conveyor thinking “don’t shut off, don’t shut off”. Just then a heavy duty service vehicle pulled out of a cross-cut and I plowed right into it. I wasn’t going very fast (~20 km), but when a Toyota Land Cruiser hits a steel plate truck, the Toyota is the loser. The front end crumpled, and I later was told that there was major frame damage.
I’m not sure why the other driver didn’t see my lights. I’m also certain his lights were not on. Nevertheless, I did get written up for this incident with a reprimand for my personnel file. The reprimander had become the reprimandee. I still insist that the incident wasn’t my fault.
The Land Cruiser laid around the shaft for a few days until it could be hoisted up to surface. Everyone coming on shift got to see it . Once it was hoisted up, it laid outside the headframe for a few more days for all the surface workers to see. Ultimately, this incident resulted in the underground miners giving me the nickname “Crash”.
This is where I’ll end the potash story.

Conclusion

Saskatchewan potash is a unique mining situation. It has its own history and mining method. The people are great and it’s a great place to learn the difference between engineering school and real life.

Mine Engineering Dream Team

By the way, I also learned that small town Saskatchewan loves their senior hockey league (20-30 year age range). The local towns compete all winter; sometimes combatively. It was Esterhazy vs. Langenburg vs. Whitewood vs. Rocanville vs. Stockholm vs. Moosomin.
One of the first questions asked in my job interview at Mosaic was if I played hockey. You see, the ideal candidate for the job would have been an ex-NHL player, preferably an enforcer, who is also a mining engineer. Gotta stack the local team.

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and insights.
Share

O/P to U/G Cross-Over – Two Projects into One

Over the years I have been involved in numerous mining tradeoff studies. These could involve throughput rate selection, site selection, processing options, tailings disposal methods, and equipment sizing. These are all relatively straightforward analyses. However, in my view, one of the more technically interesting tradeoffs is the optimization of the open pit to underground crossover point.
The majority of mining projects tend to consist of either open pit only or underground only operations. However there are instances where the orebody is such that eventually the mine must transition from open pit to underground. Open pit stripping ratios can reach uneconomic levels hence the need for the change in direction.
The evaluation of the cross-over point is interesting because one is essentially trying to fit two different mining projects together.

Transitioning isn’t easy

There are several reasons why open pit and underground can be considered as two different projects within the same project.
There is a tug of war between conflicting factors that can pull the cross-over point in one direction or the other. The following discussion will describe some of these factors.
The operating cut-off grade in an open pit mine (e.g. ~0.5 g/t Au) will be lower than that for the underground mine (~2-3 g/t Au). Hence the mineable ore zone configuration and continuity can be different for each. The mined head grades will be different, as well as the dilution and ore loss assumptions. The ore that the process plant will see can differ significantly between the two.
When ore tonnes are reallocated from open pit to underground, one will normally see an increased head grade, increased mining cost, and possibly a reduction in total metal recovered. How much these factors change for the reallocated ore will impact on the economics of the overall project and the decision being made.
A process plant designed for an open pit project may be too large for the subsequent underground project. For example a “small” 5,000 tpd open pit mill may have difficulty being kept at capacity by an underground mine. Ideally one would like to have some satellite open pits to help keep the plant at capacity. If these satellite deposits don’t exist, then a restricted plant throughput can occur. Perhaps there is a large ore stockpile created during the open pit phase that can be used to supplement underground ore feed. When in a restricted ore situation, it is possible to reduce plant operating hours or campaign the underground ore but that normally doesn’t help the overall economics.
Some investors (and companies) will view underground mines as having riskier tonnes from the perspective of defining mineable zones, dilution control, operating cost, and potential ore abandonment due to ground control issues. These risks must be considered when deciding whether to shift ore tonnes from the open pit to underground.
An underground mine that uses a backfilling method will be able to dispose of some tailings underground. Conversely moving towards a larger open pit will require a larger tailings pond, larger waste dumps and overall larger footprint. This helps make the case for underground mining, particularly where surface area is restricted or local communities are anti-open pit.
Another issue is whether the open pit and underground mines should operate sequentially or concurrently. There will need to be some degree of production overlap during the underground ramp up period. However the duration of this overlap is a subject of discussion. There are some safety issues in trying to mine beneath an operating open pit. Underground mine access could either be part way down the open pit or require an entirely separate access away from the pit.
Concurrent open pit and underground operations may impact upon the ability to backfill the open pit with either waste rock or tailings. Underground mining operations beneath a backfilled open pit may be a concern with respect to safety of the workers and ore lost in crown pillars used to separate the workings.
Open pit and underground operations will require different skill sets from the perspective of supervision, technical, and operations. Underground mining can be a highly specialized skill while open pit mining is similar to earthworks construction where skilled labour is more readily available globally. Do local people want to learn underground mining skills? Do management teams have the capability and desire to manage both these mining approaches at the same time?
In some instances if the open pit is pushed deep, the amount of underground resource remaining beneath the pit is limited. This could make the economics of the capital investment for underground development look unfavorable, resulting in the possible loss of that ore. Perhaps had the open pit been kept shallower, the investment in underground infrastructure may have been justifiable, leading to more total life-of-mine ore recovery.
The timing of the cross-over will also create another significant capital investment period. By selecting a smaller this underground investment is seen earlier in the project life. This would recreate some of the financing and execution risks the project just went through. Conversely increasing the open pit size would delay the underground mine and defer this investment and its mining risk.

Conclusion

As you can see from the foregoing discussion, there are a multitude of factors playing off one another when examining the open pit to underground cross-over point. It can be like trying to mesh two different projects together.
The general consensus seems to be to push the underground mine as far off into the future as possible.  Maximize initial production based on the low risk open open pit before transitioning.
One way some groups will simplify the transition is to declare that the underground operation will be a block cave. That way they can maintain an open pit style low cutoff grade and high production rate. Unfortunately not many deposits are amenable to block caving.  Extensive geotechnical investigations are required to determine if block caving is even applicable.
Optimization studies in general are often not well documented in 43-101 Technical Reports. In most mining studies some tradeoffs will have been done (or should have been done).  There might be only brief mention of them in the 43-101 report. I don’t see a real problem with this since a Technical Report is to describe a project study, not provide all the technical data that went into it. The downside of not presenting these tradeoffs is that they cannot be scrutinized (without having data room access).
One of the features of any optimization study is that one never really knows if you got it wrong. Once the decision is made and the project moves forward, rarely will someone ever remember or question basic design decisions made years earlier. The project is now what it is.

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and insights.
Share

Are Engineers Too Pessimistic

Geological colleagues have often joked that engineers are a pessimistic lot; they are never technically satisfied. The engineers will fire back that geologists are an overly optimistic lot; every speck of mineralization makes them ecstatic. Together they make a great team since each cancels the other out.
In my opinion engineers are often pessimistic. This is mainly because they have been trained to be that way. Throughout my own engineering career I have been called upon many times to focus on the downsides, i.e. what can happen that we don’t want to happen.

It starts early and continues on

This pessimism training started early in my career while working as a geotechnical engineer. Geotechnical engineers were always looking at failure modes and the potential causes of failure when assessing factors of safety.
Slope failure could be due to the water table, excess pore pressures, seismic or blast vibrations, liquefaction, unknown weak layers, overly steepen slopes, or operating error. As part of our job we had to come up with our list of negatives and consider them all. The more pessimistic view you had, the better job you did.
This training continued through the other stages of a career. The focus on negatives continues in mine planning and costing.
For example, there are 8,760 hours in a year, but how many productive hours will each piece of equipment provide? There will delays due to weather conditions, planned maintenance, unplanned breakdowns, inter-equipment delays, operator efficiency, and other unforeseen events. The more pessimistic a view of equipment productivity, the larger the required fleet. Geotechnical engineers would call this the factor of safety.
In the more recent past, I have been involved in numerous due diligences. Some of these were done for major mining companies looking at acquisitions. Others were on behalf of JV partners, project financiers, and juniors looking at acquisitions.
When undertaking a due diligence, particularly for a major company or financier, we are not hired to tell them how great the project is. We are hired to look for fatal flaws, identify poorly based design assumptions or errors and omissions in the technical work. We are mainly looking for negatives or red flags.
Often we get asked to participate in a Risk Analysis or SWOT analysis (Strengths-Weaknesses-Opportunities-Threats) where we are tasked with identifying strengths and weaknesses in a project.
Typically at the end of these SWOT exercises, one will see many pages of project risks with few pages of opportunities.
The opportunities will usually consist of the following cliches (feel free to use them in your own risk session); metal prices may be higher than predicted; operating costs will be lower than estimated; dilution will be better than estimated; and grind size optimization will improve process recoveries.
The project’s risk list will be long and have a broad range. The longer the list of risks, the smarter the review team appears to be.

Investing isn’t easy

After decades of the training described above, it becomes a challenge for me to invest in junior miners. My skewed view of projects carries over into my investing approach, whereby I tend to see the negatives in a project fairly quickly. These may consist of overly optimistic design assumptions or key technical aspects not understood in sufficient depth.
Most 43-101 technical reports provide a lot of technical detail; however some of them will still leave me wanting more. Most times some red flags will appear when first reviewing these reports. Some of the red flags may be relatively inconsequential or can be mitigated. However the fact that they exist can create concern. I don’t know if management knows they exists or knows how they can mitigate them.
It has been my experience that digging in a data room or speaking with the engineering consultants can reveal issues not identifiable in a 43-101 report. Possibly some of these issues were mentioned or glossed over in the report, but you won’t understand the full extent of the issues until digging deeper.
43-101 reports generally tell you what was done, but not why it was done. The fact I cannot dig into the data room or speak with the technical experts is what has me on the fence. What facts might I be missing?
Statistics show that few deposits or advanced projects become real mines. However every advanced study will say that this will be an operating mine. Many projects have positive feasibility studies but these studies are still sitting on the shelf. Is the project owner a tough bargainer or do potential acquirers / financiers see something from their due diligence review that we are not aware of?   You don’t get to see these third party reviews unless you have access to the data room.
My hesitance in investing in some companies unfortunately can be penalizing. I may end up sitting on the sidelines while watching the rising stock price. Junior mining investors tend to be a positive bunch, when combined with good promotion can result in investors piling into a stock.
Possibly I would benefit by putting my negatives aside and instead ask whether anyone else sees these negatives. If they don’t, then it might be worth taking a chance, albeit making sure to bail out at the right time.
Often newsletter writers will recommend that you “Do your own due diligence”. Undertaking a deep dive in a company takes time. In addition I’m not sure one can even do a proper due diligence without accessing a data room or the consulting team. In my opinion speaking with the engineering consultants that did the study is the best way to figure things out. That’s one reason why “hostile” due diligences can be difficult, while “friendly” DD’s allow access to a lot more information.

Conclusion

Sometimes studies that I have been involved with have undergone third party due diligence. Most times one can predict ahead of time which issues will be raised in the review. One knows how their engineers are going to think and what they are going to highlight as concerns.
Most times the issue is something we couldn’t fully address given the level of study. We might have been forced to make best guess assumptions to move forward. The review engineers will have their opinions about what assumptions they would have used. Typically the common comment is that our assumption is too optimistic and their assumption would have been more conservative or realistic (in their view).
Ultimately if the roles were reversed and I were reviewing the project I may have had the same comments. After all, the third party reviewers aren’t being hired to say everything is perfect with a project.
The odd time one hears that our assumption was too pessimistic. You usually hear this comment when the reviewing consultant wants to do the next study for the client. They would be a much more optimistic and accommodating team.
To close off this rambling blog, the next time you feel that your engineers are too negative just remember that they are trained to be that way.  If you want more positivity, hang out with a geologist (or hire a new grad).

 

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted. Follow me on Twitter at @KJKLtd for updates and insights.
Share

Vertical Conveyors Give Mining a Lift

There are not many things that are novel to me after having worked in the mining industry for almost 40 years.  However recently I came across a mining technology that I had heard very little about.  It’s actually not something new, but it has never been mentioned as a materials handling option on any project that I am aware of.
That innovative technology is vertical conveying. Not long ago I read about a vertical conveyor being used at the Fresnillo underground mine, hoisting 200 tph up from a depth of 400 metres and had a capital cost of $12.7 million.
I was aware of steep angle conveyors being used in process plants.  However they tended to be of limited height and have idlers and hardware along their entire length. Vertical conveyors are different from that.
After doing a bit of research, I discovered that vertical conveyors have been used since the 1970’s.  Their application was mainly in civil projects; for example in subway construction where one must elevate rock from the excavation level up to street level.   The mining industry is taking vertical conveyors to the next level.
I have never personally worked with vertical conveyors.  Therefore I am providing this discussion based on vendor information.  My goal is to create awareness to readers so that they might consider its application for their own projects.

How vertical conveying works

The background information on vertical conveying was provided to me by FKC-Lake Shore, a construction contractor that installs these systems.  FKC itself does not fabricate the conveyor hardware.  A link to their website is here.
The head station and tail station assemblies are installed at the top and bottom of a shaft.  The conveyor belt simply hangs in the shaft between these two points.  There is no need for internal guides or hardware down the shaft.   The conveyor belting relies on embedded steel cables for tensile strength and pockets (or cells) to carry the material.
The Pocketlift conveyor system is based on the Flexowell technology.  This has been advanced for deep underground applications with a theoretical lift height of 700 metres in one stage.   The power transfer is achieved by two steel cord belts that are connected with rigid cross bars. The ore is fed into rubber pockets, which are bolted onto the cross bars.    The standard Pocketlift can reaches capacities up to 1,500 m3/h and lift heights up to 700 m, while new generations of the technology may achieve capacities up to 4,000 m3/h.
The FLEXOWELL®-conveyor system is capable of running both horizontally and vertically, or any angle in between.  These conveyors consist of FLEXOWELL®-conveyor belts comprised of 3 components: (i) Cross-rigid belt with steel cord reinforcement; (ii) Corrugated rubber sidewalls; (iii) transverse cleats to prevent material from sliding backwards.   They can handle lump sizes varying from powdery material up to 400 mm (16 inch). Material can be raised over 500 metres with reported capacities up to 6,000 tph.

 

The benefits of vertical conveying

Vendors have evaluated the use of vertical conveying against the use of a conventional vertical shaft hoisting.    They report the economic benefits for vertical conveying will be in both capital and operating costs.
Reduced initial capital cost due to:
  • Smaller shaft excavation diameter,
  • Reduced cost of structural supports vs a typical shaft headframe,
  • Structural supports are necessary only in the loading and unloading zones and no support structures in the shaft itself since the belt hangs free.
Lower operating costs due to:
  • Significantly reduced power consumption and peak power demand,
  • Lower overall maintenance costs,
  • No shaft inspections required,
  • The belt is replaced every 8 – 10 years.

Conclusion

I consider vertical conveying as another innovation in the mining industry. There may be significant energy and cost benefits associated with it when compared to conventional shaft hoisting or truck haulage up a decline.
With raise boring, one can develop relatively low cost shafts for the vertical conveyor.  Hardware installation would be required only at the top and bottom of the shaft, not inside it.
The vendors indicate the conveying system should be able to achieve heights of 700 metres.  This may facilitate the use of internal shafts (winzes) to hoist ore from even greater depths in an expanding underground mine. It may be worth a look at your mine.
As stated earlier, I have no personal experience with vertical conveying. Undoubtedly there may be some negative issues associated with the system that I am currently unaware of.
I would appreciate anyone sharing their experience with these conveyors either in a civil application or a mining environment.   I will gladly update this blog article with additional observations or comments.
Update: for those interested in open pit applications for high angle conveyors, here is a recent article.  This is a 37 degree angle 3,000 tph sandwich belt, which is different than the vertical conveyors discussed above.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.   Follow me on Twitter at @KJKLtd for updates and insights.
Share