Blockchain vs Robotic Process Automation

I recently wrote a blog about how Artificial Intelligence (AI) is now being used by the exploration side of the mining industry. My curiosity was whether the application of AI is going to be real or is it just being used as a buzzword to help promote companies. You can read that blog at this link “AI vs The Geologists”.
With the topic of buzzwords in mind, I was curious about some of other technology advances we hear about. Coincidentally Canadian Mining Magazine (Winter 2019 issue) published two articles on upcoming technologies, the links are provided here; blockchain and robotic process automation. As with AI, I’m still curious about these two, mainly due to the limited number of applications thus far.

Blockchain for supply chain

With regards to blockchain, it seems to me the main benefits are being related to supply chains, whether for purchasing or selling activities. Some of the examples given are that one can verify where the cobalt in your phone was mined or where your engagement diamond is from. Oddly though, I don’t recall ever wanting to know where the metal in my phone is from.
Other example applications of blockchain are for inventory management, shipment number tracking, transport log tracking, and bill of lading management. The advantages are transaction speed, trust, and traceability.
Currently there are many ways shipping and receiving activities are being tracked. Hence I am a bit unclear as to where blockchain will provide a groundbreaking improvement. Can’t well designed cloud database achieve the same thing?
Blockchain reportedly has improved security in that copies of its tracking “ledgers” are simultaneously hosted on multiple servers and hence are hack-proof.
Is blockchain over-hyped?  Here’s an article that seems to think so “5 challenges to getting projects off the ground”.
Thus far in my career I have not yet had any direct experience with a real life application of blockchain. Therefore it is a bit difficult to say whether it is a great business innovation or a great business promotion. Perhaps some of you have had experience with actual blockchain applications in the mining industry. Please let me know and I will follow up. So far I am still on the fence.
On the other hand…

Robotic Process Automation

We have seen in manufacturing that robotics will eliminate repetitive type jobs. Will robotic process automation (rPA) be able to do the same by completing repetitive tasks for us?
The types of tasks being targeted for rPA are real time data analysis, daily- weekly-monthly reporting, tracking real time costs and progress schedules, or in other words, monitoring system wide process inputs and outputs.
Having access to real time data is important and it is a growing trend worldwide in all industries. In my view, mine site wide data integration is a key to the future of mining, especially when combined with AI, data mining, and data analysis. It is great to have the ability to instantly know exactly what is going on everywhere at a mine site. It is also great to know what went on in the previous hour, 24 hours, or 30 days.
Modern sensor technology is such that almost anything can be monitored now in real time. Will an action in one part of the operation trigger an impending impact in another part of the operation? For example can a large blast in the pit result in excess vibrations leading to tailings dam creep at the same time and is someone monitoring something this simultaneously? There are many action-reaction type events that occur in a mining operation, each with operational or cost impact. Only technology is able to instantly monitor all of these activities, assess their impacts, and provide quick decisions.
Collecting hoards of data from a site wide sensor network creates a dilemma in what to do with all the data collected. Smart cities are running into this issue. Who can sort through the data, decide what is important and what is noise, then summarize the data and report on it in real time? A human cannot deal with the amount of data being collected in such networks.
I have seen companies use fleet dispatch systems to collect gigabytes of data but then have difficulty in analyzing and making sense of it all. Sometimes the dispatch data is simply used to produce a month end production report. This is one example of where process automation may play a bigger role.
I don’t see repetitive process automation eliminating many jobs. Rather it may even increase the jobs needed to maintain and operate the virtual networks. Employment aside, I see the benefit of rPA is having a better understanding of the functioning organism called a mining operating. An operation is essentially an organism with lots of moving parts constantly making decisions requiring emotional intelligence.

Conclusion

Regarding the two technologies discussed in this blog, I personally feel robotic process automation will have far greater impact on mining industry future and its profitability.
For many years we have already seen some application of this technology (i.e. just in the mine or just in the plant). With improving sensors, increased computing power, AI, and cloud data storage, I feel that site wide integrated robotic process automation will lead the way.
However the clouds on the horizon may be the high cost of implementation, the risk of hacking (read https://kuchling.com/66-cyber-security-coming-to-a-mine-near-you), and the fact that different vendors may use different data protocols making system wide integration extremely difficult.
In my view blockchain has not yet made the case for itself. No doubt I need more education on blockchain but that will hopefully come naturally as some real life applications are introduced into our daily activities.  Read the Canadian Mining Magazine articles linked to above and see what you think the future holds for mining.
For those interested in remote tailings dam monitoring,here is an interesting CIM article “The internet of tailings“.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

AI versus the Geologists

We likely have all seen recent articles about how Artificial Intelligence (AI) is going to change the mining industry.   I have been wondering if AI is a real solution or just a great buzzword.   My original skepticism has diminished somewhat and let me explain why.
At a booth at the 2019 PDAC I had a chance to speak with a publicly traded company called Albert Mining (referencing Albert Einstein’s intelligence).  They are providing exploration consulting services by applying a form of AI and have been doing so for many years.  The company has been around since 2005 but were not using the term AI to describe their methods.
These days the term “AI” has become very trendy.  Currently IBM Canada and Goldcorp are using Watson and AI to further their exploration efforts on the Red Lake property. GoldSpot Discoveries is another recent player in the mining AI field.  It appears Goldspot offers something similar to Albert Mining but they extend their platform to include picking projects, picking teams, and picking investments. That’s a lot of analysis to undertake.  Albert Mining is focused solely on mineral exploration.

Here is what I learned

Albert Mining’s system, called CARDS (Computer Aided Resource Detection System) uses pattern recognition and multi-variate analysis to examine a mineral property to look for targets.     The system requires that the property has some known mineralization hits and assay samples.  These are used to “teach” the software.   Both positive hits and negative hits are valuable in this teaching step.
The exploration property is sub-divided into cells and data are assigned to each cell.  These data attributes could be derived from geophysics, geochemistry, topography, soil samples, indicator minerals, assayed samples, geological maps, etc.  I was told that a cell could contain over 700 different data attributes.
The algorithm then examines the cell data to teach itself which attributes correlate to known mineralization and which attributes correlate with barren areas. It essentially determines a geological “signature” for each mineralization type.    There could be millions of data points and combinations of attributes.  Correlation patterns may be invisible to the naked eye, but not to the computer algorithm.
Once the geological signatures are determined, the remainder of the property is examined to look for similar signature hits.  Geological biases are eliminated since it is all data driven.   The newly defined exploration targets are given a ranking score based on the extent of correlation.
Some things to note are that the system works best for shallow deposits, unless one has some deep penetrating geophysical surveys.  The system works best if there is fairly uniform data coverage across the entire property.  The property should also have generally similar geological conditions and as mentioned before, the property needs to have some mineralized assay information.
This exploration approach reminds me somewhat of the book Moneyball.  This book is about the Oakland A’s baseball team where unconventional statistics were used to rank players in order to find hidden gems.

Are geologists becoming obsolete?

I was told that many in the geological community tend to discount the AI approach.  Either they don’t think it will work or they are fearing for their jobs.  Personally I don’t understand these fears nor can I really see how geologists can ever be eliminated.  Someone still has to collect and prepare the data as well as ultimately make the final decision on the proposed targets.   I don’t see the downside in using AI as another tool in the geologist’s toolbox.
Albert Mining’s stock price has recently gained some traction (note: I am not promoting them)  because junior mining news releases are starting to mention their name more often (Spruce Ridge Resources and Falco Resources are some examples).
Probably years ago if a mining company said their drill targets were generated by an algorithm, they might have gotten strange looks.   Today if a mining company says their drill targets were generated by AI, it gives them a cutting edge persona.  Times have changed.

In conclusion

I suggest we all take a closer looks at the AI technology to better understand what it does.
P.S. I  might also suggest that Albert Mining consider revising their company name to incorporate the term “AI” to stay on trend. (Update: In October 2019, Albert Mining changed their name to Windfall Geotek; I’m not sure it better explains what they do).
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Does the Mining Industry Employ Interns?

employing interns
Over the couple of years I have been working on a side project in the tech industry.   One of the things that struck me was the hiring of interns, both paid and unpaid.
I’m now aware that interns are being hired in other industries such as legal, politics, journalism, and marketing.  However I have never come across the use of interns within the mining industry.
Intern

Why hire interns?

I was recently talking to a marketing consultant about tips on tech marketing and one of the suggestions she made was to hire an unpaid intern.  They would do much of the legwork of finding sales contacts and establishing contact with them.
My first question was why would anyone work for free?  There are  three main reasons:
  1. For school credit; as part of a course credit in college or university where an internship is part of the program requirement.
  2. For experience; it is difficult to get a real job without experience and so the internship teaches, builds  experience, and establishes a portfolio of work.
  3. Networking; building up industry connections can possibly lead to permanent work down the road.

Its the right thing to do

At first I was taken aback at the thought of asking someone to work for my company for free.  Are we that cheap?
Thinking about it further, if you are paying someone a salary the expectation is that they should be somewhat skilled at their job.  I have come to realize that the internship may actually be a win-win for both parties.

Its a win-win

The company gets a chance to learn about potential employees and also gets productive service from them.
The intern gains employment experience and learns about the realities of the business world.  Students have already paid the schools to teach them.  Now businesses can help teach them more, but at no cost.   It’s a win-win for both.
So how did our unpaid intern search go?  We posted a free ad on indeed.ca.  Within 72 hours we received over ten replies, of which only 2-3 came close to meeting the actual qualifications.  Some of the applicants had no relevant experience at all.
Possibly in today’s job market people are willing to work for free on the hope that they can get some experience, which will hopefully lead to a permanent job in the future.

Conclusion

The question is whether the mining industry can make use of interns in the areas of geology, engineering, marketing, presentation graphics, websites, etc?
There may be many students or recent grads looking for an opportunity and are willing to do whatever it takes to  advance their careers.
Even if your operating budget can’t afford the cost of hiring another person, you may still have a chance to help out someone new in the industry.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Pre-Concentration – Savior or Not?

pre-concentration
Can pre-concentration become a savior for the mining industry by lowering metal production costs?
Pre-concentration is a way of reducing the quantity of ore requiring higher cost downstream processing, i.e. grinding in particular.  One can attain significant cost savings in energy consumption and operating expenses by using a low cost method to pre-concentrate minerals into a smaller volume. A previous blog “Remote Sensing of Ore Grades” discussed one new pre-concentration method currently under development.

Pre-concentration isn’t new

Pre-concentration has been around for many years.  However the techniques available are generally limited.  Hence many ore types are not amenable to it..unfortunately.
The main methods available are:
Ore sorting, which can be done using automated optical, electrical, or magnetic susceptibility sensors to separate ore particles from waste. The different sensors can rely on colour recognition, near infrared radiation, x-ray fluorescence, x-ray transmission, radiometric, or electromagnetic properties. The sensors can determine if a particle contains valuable mineral or waste, thereby sending a signal to activate air jets to deflect material into ore and waste bins.
Density separation, or specific gravity differences are another property that some pre-concentration methods can use. Gravity based systems such as dense media separation (DMS), jigs, or centrifugal concentrators are currently in commercial production.
Scrubbing, another very simple pre-concentration method is scrubbing, whereby simply separating fines or coatings may remove deleterious materials prior to final processing.   Blue Sky Uranium is a recent project that I was involved in where a simple scrubbing step resulted in 4-5 times increase in grade and volume reduction.

 BenefitsJig Plant 1

Pre-concentration provides several benefits:
  • If done underground or at satellite mine site, the ore hoisting or ore transport costs can be reduced.
  • If the pre-concentration rejects can be used as mine backfill, this can reduce backfilling costs.
  • Processing of higher grade pre-concentrated mill feed can reduce energy costs and ultimately reduce the cash cost of metal produced.
  • Grinding costs can be reduced if waste particles are harder than the ore particles and they can be scalped.
  • Minimizing waste through the process plant will reduce the quantity of fine tailings that must be disposed of.
  • Lowering operating costs may potentially allow lowering of the cutoff grade and increasing mineral reserves.
  • Higher head grades would increase metal production without needing an increase in plant throughput.

Limited ore types are suited for pre-concentration

Not all ore types are amenable to pre-concentration and therefore a rigorous testing program is required. In most cases a pre-con method is relatively obvious to metallurgical engineers but testing is still required to measure performance.
Testing is required to determine the waste rejection achieved without incurring significant ore loss. Generally one can produce a higher quality product if one is willing to reject more ore with the waste.  It becomes a trade-off of metal recovery versus processing cost savings.
Fine particles generated in the crushing stage might need to bypass the pre-con circuit. If this bypassed material is sent to downstream processing circuits, one may need to examine crushers that minimize fines to avoid excessive material bypassing the pre-con circuit.

Reject waste or reject ore?

One must decide if the pre-con system should reject waste particles from the material stream or reject ore particles from the stream.  The overall metal recovery and product quality may be impacted depending on which approach is used.

Conclusion

The bottom line is that the mining industry is continually looking for ways to improve costs and pre-concentration may be a great way to do this.   Every process plant design should take a look at it to see if is feasible for their ore type.
While the existing pre-concentration methods have their limitations, future technologies may bring in more ways to pre-concentrate.  This is probably an area where research dollars would be well spent.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Remote Sensing of Ore Grades

mining automation
Update:  This blog was originally written in March 2016 and has been updated Jan 2019. 
The mining industry must continually find ways to improve and modernize. The most likely avenue for improvement will be using new technologies as they become available.
One of the players on the scene is a start-up company called “MineSense Technologies Ltd.”  They are a British Columbia company looking to improve ore extraction and recovery processes based on the sensing and sorting of low-grade ore. They hope their technology will improve mine economics by reducing the consumption of energy, water, and reagents.

Minesense

Having first written about this in 2016, its still not entirely clear to me how developed their technology is in 2019. Thus far they appear to be secretive with respect to their testing and performance results.  Certainly they are able to raise financing to keep them going.

Sensors are the answer

It appears MineSense is relying on a combination of ground-penetrating sensors with other technology in order to measure and report the grade of ore in real time.
Existing ore sorting technologies seem to focus on distinguishing mineralized material from gangue, but MineSense seems to be targeting using actual ore grades as the defining factor.
They hope to be able to eventually integrate their technology into equipment such as shovels, scooptrams, conveyors, feeders, and transfer chutes.
Their proprietary technology is based on High Frequency Electromagnetic Spectrometry and High Speed X-Ray Fluorescence sensors. Reportedly these can deliver better sensitivity and operate at high speeds. They plan to develop two distinct product lines; shovel-based systems; and conveyor belt-based systems.

ShovelSense

Their ShovelSense system would be a real-time mineral telemetry and decision system and used for measurement of ore quality while material is being scooped into the dipper, then reporting the ore quality and type to the grade control/ore routing system, and then enabling real-time online ore/waste dispatch decisions. Additional features may include tramp metal and missing tooth detection.  Sounds like a good idea, albeit some practical operating issues will need to be overcome.

BeltSense

Their belt conveyor systems (BeltSense) will use high-speed multi-channel sensing to characterize conveyed ore and waste in real time, allowing grades and tonnages to be reported and allowing ore to be diverted to correct destinations based on the sensor responses.
MineSense say that pilot units are operating at 20 tph and systems of up to 2000 tph are in the development stages.
Ore sorting has been around for a long time, with companies like Tomra, but possibly the MineSense technical approach will be different.

Conclusion

The bottom line is that we should all keep an eye on the continued development of this technology, especially as MineSense completes larger field trials.  Hopefully they will soon share results with industry since it will be critical for operators to see more actual case study data on their website.
I recognize that developing new technology will have its successes and failures. Setbacks should not be viewed as failure since innovation takes time. Hopefully after fine tuning their technology they can advance to the commercialization stage.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Disrupt Mining Challenge – Watch for it at PDAC

Update:  This blog was originally written in January 2016, and has been updated for Jan 2018.

Gold Rush Challenge

In 2016 at PDAC, Integra Gold held the first the Gold Rush Challenge.  It was an innovative event for the mining industry.  It was following along on the footsteps of the Goldcorp Challenge held way back in 2001.
The Integra Gold Rush Challenge was a contest whereby entrants were given access to a geological database and asked to prepare submissions presenting the best prospects for the next gold discovery on the Lamaque property.  Winners would get a share of the C$1 million prize.
Integra Gold hoped that the contest would expand their access to quality people outside their company enabling their own in-house geological team to focus on other exploration projects.   In total 1,342 entrants from over 83 countries registered to compete in the challenge.  A team from SGS Canada won the prize.

Then Disrupt Mining came along

In 2017, its seem the next step in the innovation process was the creation of Disrupt Mining sponsoerd by Goldcorp.  Companies and teams developing new technologies would compete to win a $1 million prize.
In 2017, the co-winning teams were from Cementation Canada (new hoisting technology) and Kore Geosystems (data analystics for decision making).
In 2018, the winning team was from Acoustic Zoom, an new way to undertake seismic surveys.

The 2019 winners will be announced at PDAC.  The entry deadline has passed so you’re out of luck for this year.

Conclusion

At PDAC there are always a lot of things to do, from networking, visiting booths, presentations, trade shows, gala dinners, and hospitality suites.
Now Disrupt Mining brings another event for your PDAC agenda.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Meetups and Mining Millennials

mining millenials
Over the last year I have had many encounters with the Toronto tech start-up community.  I have noticed some similarities with the junior mining industry but some differences also.
The tech start-up model is similar to the junior mining business model as it relates to early stage funding followed by additional financing rounds.  One obvious difference is that mining mainly uses the public financing route (IPO’s) while the tech industry relies on private equity venture capital (VC’s).
There are also some less obvious differences.
Generally the tech industry is young, vibrant, technology-savvy, and applies the latest in social technology to collaborate.  The mining industry seems to be lagging behind on many of these aspects.
The following article will describe a few of my observations. As you read through this, ask yourself “Should the mining industry be doing these things?”

Tech Meetups and Networking

My first experience with the tech industry was associated with the many after-hours networking meetings called “meetups”.  They are held weeknights from 6 to 9 pm  and consist of guest speakers, expert panels, and for general networking purposes.   Often guest speakers will describe their learnings in starting new companies and failures they had along the way.
The meetups may also provide “how-to” advice for techniques like Google Analytics, Facebook advertising, Google Adwords, email marketing, etc.).
Attending these meetups is usually free.  They are typically held after hours at different tech company offices and they often provide free beer and pizza. One can see the entire industry working together for the betterment of the industry.

How to Organize Meetups

Scheduling of meetups is done via the online software platforms Meetup or eventbrite.  Both of  these work well for announcing the meeting notice and tracking signups and attendees.
By the way, meetups are not only tech-related; they are also held for interest groups for hiking, theatre, writing, yoga, business marketing, etc.  The platforms provide a good way to manage communities.  Unfortunately here in Toronto there are no geology or mining related meetups so the mining industry may be missing out on a good way to build a more collaborative community.
The mining industry does have some local meetings, as far as I know there are mainly three after-hour mining events.  The CIM has a monthly luncheon with a cost of $50-$65 (not exactly inclusive to everybody).   There is a Toronto Geological Discussion Group that holds monthly meetings and seems to be comprised of the older geologist demographic.  The third event is Mining 4 Beer, which a small group that meets intermittently at a local bar.  These few events limit the amount of buzz for those working in the mining industry.  There are a lot of mining companies here with a lot of mining people but not a lot of vibrancy.

Where to hold an event

Most of the tech meetups are held in local tech offices.  These offices are great. They have an open concept, pool tables, ping pong, video games, fully stocked kitchen. Who wouldn’t want to work there?
The last time I was in the offices of a large engineering firm I felt like a lab rat in a cubical maze.   I’m not saying engineering offices can switch to a tech office layout, but more enjoyment of the office environment might help draw more people to the mining industry.
Perhaps it’s easier to have a positive work attitude when money is being thrown at you (as is happening in the tech world) rather than having to scratch and claw for funds like mining must do right now.   However I suggest if one wants more smart young people to come into the industry then one needs to adapt.  This means more than just buying the latest 3D geological software.  It means creating an environment that people want to work in.
In the late 1990’s I was working in the Diavik  engineering office in Calgary.  They provided a unique office layout whereby everyone had an “office” but no front wall on the office so you couldn’t shut yourself in.  There were numerous map layout tables scattered throughout the office to purposely foster discussion among the team.
A similar type philosophy is used by Apple in their office layout design where even the kitchen placement has a purpose.  People should mingle and run into one another to promote conversation.  Discussion is good. Camping out in an office is not good.

Keep it short and to the point

Another thing I noticed with the tech industry is that when start-up tech companies are given an opportunity to tell their story, typically they only have 5 to 10 minutes to pitch.  No long winded thirty page PowerPoint presentation to explain what they are doing.
The tech industry is also big on the “elevator pitch”, a one minute verbal summary of what they are doing.  The tech people are taught to be concise.  If you can’t explain it in plain language in one minute then it’s too complicated.
For comparison, many mining investor presentations can be long, highly technical, and tailored to other technical people and not the average person.   One must ask who is the real target audience for those presentations?

Communication methods

The tech industry relies a lot on remote workers.   They might be overseas or spread around Canada. For communication and collaboration, they use various online systems such as Slack, Google Hangout, Trello.  No more  long email threads with five people cc’d on each email.   Slack uses a chatting approach, similar to text messaging, which makes it easier to follow the conversation and share files.
Can the mining industry be taught to use something new like Slack?  I don’t see a problem with that as long as one honestly wants to learn it. It’s really not that complicated.
For interest, another blog provides some more discussion on online collaboration software “Online Collaboration and Management Tools“.

Conclusion

The bottom line is that I can see a great difference in the attitude and atmosphere in the tech industry compared to the mining industry.  The junior mining game was the precursor for the tech start-up industry but has not kept pace with evolving work techniques.
As senior personnel retire from mining, the loss of this mining experience will be felt.  However the new ideas that may follow could be a positive outcome.
Share

New Mining Software and 43-101 Legal Issues

43-101 issues
NI 43-101 puts a fair amount of legal liability on the Qualified Person preparing a resource or reserve estimate or sign off on an advanced study.  The QP is to be responsible for the accuracy of their work and take legal responsibility.
Every so often some new mining software comes along and I often wonder what are the risks in using it? Some examples of new mining software that I have heard about (but not personally used) nor have seen mentioned in any 43-101 studies are SimSched, the ThreeDify’s software packages, NPV One, and Bentley.

Is the software doing everything correctly?

Given that as a QP I am legally responsible for my work, I am  bit apprehensive about how I can be assured the new software will provide reliable and accurate results for which I accept legal liability.  The last thing I would want to do is issue a public technical report which is found to be in error due to a software bug.
Irrespective of 43-101, if you are working at a mining operation the last thing you want to do is present management with an incorrect reserve, pit design, or production plan.
If you are a consultant, how agreeable will your client be when you tell him that his study was done using a novel software package and not one of the industry standard packages, and there was an error in it?
I recall working with a major mining company and there was a reluctance to adopt any new software that was unproven and not an industry standard.  Money was not the issue; the company’s concern  was with the risk in using unproven software.

What if you have a limited budget?

How do you view new software if you have a limited budget?   The new software may be cheaper, may appear to be be great, and may be a technological improvement and all at a lower cost.  However the software risk still remains.  There is no guarantee that all software output is correct simply because it comes from a computer.
As a QP, I suggest the onus is on the software developers to demonstrate that they can produce reliable and comparable results under all conditions.  They need to be able to convince the future users that their software is accurate.
Perhaps over time the new software will gain wider adoption and be generally accepted.  We may see more 43-101 reports that use it and hence it will get more overall acceptance.
Another question when developing a market for new software is whether it is better to focus on more consultant adoption or more mining company adoption?
Will mining companies use the software if their consultants are using it, or will consultants use it if more companies adopt it?  It’s an interesting discussion that new software vendors must deal with in trying to grow their market share.

 

Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website. The entire blog post library can be found at this LINK with topics ranging from geotechnical, financial modelling, and junior mining investing.
Share

3D Printing – A Simple Idea

3D models
We hear more and more about 3D printing and what it is able to do. 3D printers have come down in price and can be bought for under $500.   Here is an example of using a 3D printer from a recent project that I consulted on.
The open pit was going to be located in hilly terrain, and issues related to haul road access, waste dump sites, and leach pad location were all important.   The client used a 3D printer to create a small desktop model of the terrain, which was given to each of the consulting firms.
The photo below shows the scale of the model.
3D printed topographyMembers of the engineering team were each given their own 3D model to take back to their offices.  Putting one of these on your desk helps with familiarity of the overall site and allows you to better understand the siting and drainage issues.
Topographic maps may give data on actual elevations and distances, but even a small 3D model gives you a feel for the site.    The model shown above was for undisturbed topography but one could easily print off a similar model once the final pit and dump design is done.
With the current three-dimensional printing capabilities, creating simple 3D topographic models for the engineering team is feasible and I recommend doing so.
At the same time provide the Owner’s team with their own models, helping them understand the site issues that must be dealt with.
Share

Google Earth – Keep it On Hand

Mining studies
In a previous blog post “Mine Site Visit – What Is the Purpose?” I briefly discussed the requirements for a mine site visit to be completed by one or more Qualified Persons (“QP”) in a 43-101 compliant study.    Unfortunately normally the entire study team cannot participate in a site visit; however the next best thing may be Google Earth.

See the Mine Site with Google Earth

Gather your team around their computers and fire up screen sharing software like Teams, GoToMeeting, Skype, or Zoom.  Give control of the mouse to someone who knows the site well.  Here are some of the things you can do on your group tour.
  • You can fly-around the project site examining the topography.
  • You can view regional features, regional facilities, land access routes, and existing infrastructure.
  • You can measure distances (or areas), either in a straight line or along a zigzag path.
  • You can view historical aerial photos (if they exist) to show how the area may have changed over time.
  • You can import GPS tracks and survey waypoints.  If a member of the study team has visited the site with a GPS, they can illustrate their route and their observations.
My recommendation, at the start of a study, is to always have a Google Earth session with your technical team to examine the project site and the regional infrastructure.
A group session like this ensures that everyone sees and hears the same thing. It’s like taking a helicopter tour of the site with your entire study team at once.   A “helicopter tour” would be a good agenda item at the very first kickoff meeting.
Another option is to check the aerial photos and Bird’s Eye views on the Bing Maps website (www.bing.com/maps).  Sometimes those images will be different than what you will find in Google Maps or Google Earth.
As mentioned above, for those still interested the  previous blog post is at “Mine Site Visit – What Is the Purpose?
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  
Share