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ABSTRACT 
Current mining of two kimberlite pipes at the Diavik Diamond Mine requires reasonably accurate estimates of 
groundwater inflow quality and quantity over the life of mine.  Prior to mining, from 1995 to 1999, three conceptual 
hydrogeologic models were developed for the mine.  The results of the numerical model, developed from each 
successive conceptual model, were used to develop field programs to address data gaps and/or to more accurately 
assess the most sensitive parameters.   
 
RÉSUMÉ 
Une estimation relativement précise de la qualité et quantité des écoulements souterrains est nécessaire pendant la 
période d’exploitation minière des deux cheminées de kimberlites à la mine de diamants Diavek.  De 1995 à 1999, 
avant l’initiation de l’exploitation, trois modèles hydrogéologiques conceptuels furent développés pour la mine.  Les 
résultats du modèle numérique, construit à partir des modèles conceptuels, ont servi à développer les programmes 
de terrain visant à combler le manque de données et/ou à évaluer de façon plus précise les paramètres les plus 
sensibles.   
 
 
 
1. INTRODUCTION 
 
The Diavik Diamond Mine is located on a 20-sq-km 
island in Lac de Gras, 300 kilometres northeast of 
Yellowknife, Northwest Territories of Canada (Figure 1). 
The mine is an unincorporated joint venture between 
Diavik Diamond Mines Inc. (DDMI; 60%) and Aber 
Diamond Limited Partnership (40%). Both companies 
are headquartered in Yellowknife.  DDMI is a wholly 
owned subsidiary of Rio Tinto, which is headquartered 
in London, England, and Aber Diamond Limited 
Partnership is a wholly owned subsidiary of Aber 
Diamond Corporation of Toronto, Ontario. DDMI is the 
operator of the project. 
 

 
Figure 1. Site Location 
 

Presently DDMI is mining the A154 South and A154 
North kimberlite pipes through the A154 open pit 
(Figure 2).  To allow planning, engineering, and 
implementation of sufficient water handling 
infrastructure, reasonably accurate estimates of 
groundwater inflow quality and quantity over the life of 
mine are required.  Infrastructure includes in-pit pumps 
and pipelines, a water storage facility and a water 
treatment plant.  Because of the remote location of the 
mine and the need to transport large equipment and 
bulk materials on the winter ice road from Yellowknife, 
advanced planning is critical. 
 
The mine is presently evaluating the feasibility of mining 
more ore underneath the open pit via an underground 
mining operation.  In addition, construction of a second 
water retention dike is currently underway, which will 
allow open pit and underground mining of a third ore 
body called the A418 kimberlite pipe (Figure 2).  These 
additional mine workings will increase the total mine 
inflows and further stress the existing mine water 
handling systems, which further emphasizes the need 
for reasonably accurate predictions of inflows and 
quality. 
 
This paper presents a historical development of the 
conceptual and numerical hydrogeologic models used to 
predict mine inflow for the A154 area.  In particular, it 
examines the changes in the models resulting from the 
discovery of a fractured rock zone (FRZ) associated with 
Dewey’s Fault, which extends through the two pipes and 
out beneath Lac de Gras and the influence of this highly 
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permeable zone on groundwater inflow to the pit.  The 
pit is developed in competent and relatively low 
permeable predominantly metamorphosed Archaean 
granitic country rocks, with some interspersed biotite 
schists. Lac de Gras provides a significant recharge 
boundary to the system as it borders the open pit.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Conceptual Representation of the Mine 
Workings at the End of Mining   
 
 
2. PRE-MINING CONCEPTUAL MODELS 
  
2.1 1996 Field Data  
 
The 1996 conceptual model for the site was based on 
air photo lineaments and bathymetry, structural data 
from geotechnical drilling investigations, packer testing 
at 15 to 60 m intervals along the length of eleven 
boreholes, measurements of discharge from flowing 
boreholes drilled along the exploratory decline, and data 
from four thermistors and pressure transducers installed 
at various depths along one borehole.    
 
These data indicated that up to 4 potential shearing 
orientations are associated with brittle fault zones.  The 
most prominent shear feature identified was a 
northwesterly trending feature between the A154 North 
and A154 South pipes. 
 
During excavation of the exploratory decline, which was 
advanced from the permafrost under the East Island into 
the unfrozen A154S pipe under the lake, flow rates and 
shut-in pressures were measured in cover holes 
advanced ahead of the face.  When high groundwater 
inflows were encountered each borehole was grouted 
immediately after it was completed.  Over most of the 
portion of the decline advanced through country rock, 
total inflow was less than 80 L/min with the exception of 
a discrete feature located near to the A154S pipe.  Flow 
from this structural feature varied from 150 L/min to 
400 L/min.  The feature was grouted where it was 
encountered in declines and drifts. 
 
Air photo and bathymetry data were used to identify a 
number of trending lineaments.  One borehole inclined 

at 45 degrees from the horizontal, GTH-23, was 
advanced from the decline into an interpreted fault zone 
located between the A154S and A154N pipes.  
Measurements of the shut-in pressure and the 
discharge rate for various intervals throughout the 
boreholes were used to determine hydraulic 
conductivity.  The fault zone was encountered from a 
depth of 34 m to the end of the borehole at 137 m depth 
with inflows ranging from 10 L/min to 3000 L/min. 
 
2.2 1996 Conceptual Model 
 
Based on the field program described above, a 
conceptual model was developed that consisted of the 
following hydrostratigraphic units: lakebed sediments, 
near surface weathered rock, competent country rock, 
kimberlite, and fault zones in the country rock.  The 
shallow competent country rock was inferred to be 
weakly fractured with a fairly uniform hydraulic 
conductivity of approximately 10-8 m/s to 10-7 m/s.  A 
reduction in hydraulic conductivity of country rock was 
assumed to take place at depth due to an expected 
reduction in fracture aperture as a result of increased 
vertical loading.  Such reductions in hydraulic 
conductivity with depth have been observed at other 
locations in the Canadian Shield (Stevenson et al., 1996 
a & b, Ophori et al., 1996, Ophori and Chan, 1994).  
Based on results of packer testing, the hydraulic 
conductivity of the kimberlite was estimated to be 
between 5 x 10-8 m/s and 5 x 10-6 m/s.   
 
Three steeply dipping fault zones were interpreted to be 
present based largely on lineaments in air photographs 
and bathymetry.  These zones are as follows: a 
northeast trending feature to the east of the A154S pipe 
corresponding to a surface lineament up to 200 m wide, 
a northwest tending feature running through the A154 N 
and S pipes corresponding to a surface lineament up to 
20 m wide, and a north-northwest trending feature to the 
south of the A418 Pipe also corresponding to a surface 
lineament up to 20 m wide.   
 
Based on field investigations at the site and an adjacent 
property, permafrost conditions were inferred to be 
240 m deep beneath the East Island.  The depth of the 
permafrost was inferred to decrease towards the 
lakeshore and beneath the lake itself a thawed zone 
exists.  Hydrogeologically, permafrost is considered to 
be virtually impermeable.  Although a thin thawed zone 
referred to as the active layer occurs at the surface in 
the warmer months, this flow is negligible.   
 
Hydraulic head data collected during packer testing and 
the pressure transducers installed in one borehole 
indicated that prior to mining the groundwater under Lac 
de Gras was near to hydrostatic.  These conditions were 
likely the result of the presence of the lake acting as an 
extensive constant head boundary and the absence of 
recharge through permafrost on the islands and the 
mainland. 
 
During mining the open pits and underground mine 
workings act as sinks for groundwater flow (Figure 3).    

Lac de Gras 
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Water is induced to flow through the lakebed sediments, 
dikes, and the bedrock into the open pits and 
underground workings.  The hydraulic conductivity of the 
inferred fault zones would result in much of the 
groundwater inflow into the mine occurring through 
these zones. 
 
Based on the 1996 conceptual model, a numerical 
hydrogeologic model of the site was constructed using 
MODFLOW (McDonald and Harbaugh, 1988).  Because 
of the near hydrostatic conditions beneath Lac de Gras 
prior to mining, meaningful calibration of this model was 
not possible with the data available at that time.   
 
Results of the numerical model indicated that model 
predictions of inflow to the proposed mine were most 
sensitive to the width and hydraulic conductivity of the 
fault zones included in the model.  Model predictions 
were found to be significantly less sensitive to the 
hydraulic conductivity of the kimberlite and the relatively 
competent country rock, and to the depth and extent of 
permafrost. 
 
Based on the results of the modelling, field 
investigations were recommended to determine if the 
surface lineaments corresponded to a significant 
hydrogeologic feature of high permeability and to 
determine the width of the zones if they were found to 
be present. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Conceptual Model of Groundwater Flow 
During Mining 
 
2.3  1997 Field Data 
 
The 1997 field investigations included geotechnical 
logging of 19 boreholes, six of which were drilled from 
the lowest level of the exploratory decline to the A154S 
pipe.  In thirteen of these boreholes, packer testing was 
conducted at approximately 40 m intervals while 
thermistor strings were installed in four of the boreholes.  
In addition, a flow recession test was conducted in the 
exploratory decline using boreholes drilled from the 
decline. 
 
The flow recession test was conducted on an apparent 
thin FRZ associated with a diabase dike running 

between the 154N and S pipes.  The test consisted of 
allowing one borehole to flow and measuring the 
pressure drop in two adjacent boreholes.  Time-
drawdown and recovery measurements were used to 
calculate the hydraulic conductivity of the fractured 
zone.  This analysis yielded a hydraulic conductivity 
value of approximately 3 x 10-5 m/s.  These data used 
together with drilling conducted from the surface; 
however, suggested that this FRZ was associated with a 
diabase dike and limited to the area between the two 
pipes.   
 
Surface drilling across all other surface lineaments 
indicated that these features were not likely highly 
permeable.  In addition, a review of the air photo 
lineaments indicated that several of the features 
corresponded to “boulder trains” rather than structural 
discontinuities.     
 
Following the drilling program undertaken in the 1997 
field season, a general structural geology review was 
undertaken to identify FRZs based on Rock Quality 
Designation (RQD), core photographs, and fracture 
characteristics data in all boreholes that had been 
drilled at that time. Zones with enhanced fracture 
density relative to background were identified as FRZs.  
Three types of fractured systems were identified during 
this process: fractured rock with a significant fracture 
frequency, diabase dike contacts and kimberlite dike 
contacts.  Data from all boreholes drilled at the site 
including delineation boreholes were then used to 
determine an average fractured rock zone spacing at 
the site.  This analysis indicated that the average 
fractured rock zone spacing was 110 m and the average 
width was 4 m.   Based on observations in the 
exploratory decline and the observed relationship with 
diabase dikes, the fractured rock zones were assumed 
to be steeply dipping.   
 
2.4 1998 Conceptual Model 
 
The conceptual model of the site that was developed 
following the 1997 field season included four major 
hydrostratigraphic units: relatively competent country 
rock, fractured rock zones, kimberlite and thick diabase 
dikes.  Lakebed sediments and weathered bedrock units 
were not included as major hydrostratigraphic units in 
this model as it was assumed that during construction of 
the dike, these sediments would be stripped and/or 
grouted.  The geometric mean of the results of all 
packer testing conducted in each of these stratigraphic 
units was used to determine large-scale hydraulic 
conductivities.   
 
Fractured rock zones were incorporated in the 
conceptual model as two steeply dipping near 
orthogonal sets at spacings indicated from the structural 
data (Figure 4).  These sets were assumed to be 
oriented roughly parallel to the major diabase dikes 
identified at the site: one trending north-northeast and 
the other north-north-west.  The fractured rock zones in 
the model intersected the A154N and S pipes and the 
A418 pipe.  Because the lateral and vertical continuity of 

1646

Sea to Sky Geotechnique 2006



fractured rock zones could not be determined from field 
data, fractured rock zones were assumed to continuous 
across the model domain.  This assumption would likely 
result in conservatively high inflows. 
 
Diabase dikes that were less than 2 to 5 metres were 
found to be relatively highly fractured with a hydraulic 
conductivity similar to fractured rock zones.  On the 
other hand, diabase dikes with widths greater than 5 to 
10 metres were still found to be fractured, but the short 
fractures and blocky nature resulted in a lower hydraulic 
conductivity.  The diabase dike to the east of the 
kimberlite pipes was assumed to behave as a low 
permeability barrier to groundwater flow through the 
competent rock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 1998 Conceptual Model 
 
Packer tests conducted in the competent bedrock 
collected up to and including the 1997 field season were 
limited to less than 330 m depth.  Although a reduction 
in the hydraulic conductivity of this unit was expected, 
these packer testing results did not show any trend in 
hydraulic conductivity with depth.  Therefore, the 
hydraulic conductivity of bedrock was assumed to 
remain constant with depth in this conceptual model. 
 
The results of a permafrost model for the site (Nixon, 
1997a, Nixon 1997b) were used to revise the extent of 
permafrost in the 1998 conceptual model.  
Consequently, the depth of permafrost under the East 
Island was increased from 240 m to up to 390 m.  
Permafrost was also included in the model to a depth of 
60 m underneath the small islands located to the east of 
the East Island. 
 
2.5 Geochemical Data 
 
In the Canadian Shield, the Total Dissolved Solids 
(TDS) in groundwater generally increases with 
increasing depth.  Results of chemical analyses of deep 
saline water collected from several mines in the 
Canadian Shield were presented in Frape and Fritz 
(1997).   
   

A review of geochemical data collected for the Diavik 
site was also conducted by Blowes and Logsdon (1997) 
and resulted in the determination of a Diavik TDS-depth 
profile similar to the profile presented in Frape and Fritz 
(1997).  Both the site profile and the Frape and Fritz 
(1997) profiles are presented in Figure 5.  The profile is 
based on Diavik site-specific data collected at depths up 
to 350 m and supplemented with data collected at the 
Echo Bay Lupin mine between 800 and 1300 m depth 
The Echo Bay Lupin mine is located approximately 
100 km north of the site.  Based on measurements of 
tritium concentrations, none of the site-specific samples 
showed evidence of dilution by modern groundwater 
such as drilling fluids or lake water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  TDS-Depth Profile  
 
2.6 1998 Numerical Model 
 
Based on the 1998 conceptual model, a numerical 
hydrogeologic model of the site was constructed using 
MODFLOW.  Initially a variable density model was used 
to assess the effects of density on the transport of 
deeper brackish water up into the mine.  This modelling 
indicated that the density effects on transport were 
negligible compared to the hydraulic effects; therefore, a 
single density transport model, MT3D (Zheng, 1990), 
was used to simulate transport of higher TDS water from 
depth.   
 
Fractured rock zones were simulated in the model as 
thin planar features of higher hydraulic conductivity at 
spacing similar to those determined from the review of 
the structural data. 
 

0

250

500

750

1000

1250

1500

1750

2000

10 100 1,000 10,000 100,000 1,000,000

Total Dissolved Solids (mg/L)

D
e

p
th

 (
m

)

Frape and Fritz data Diavik data
Diavik - pumping test data Lupin data

Frape and Fritz 

Profile

Diavik Profile

1647

Sea to Sky Geotechnique 2006



The numerical model for the site was calibrated to 
inflows recorded during development of the exploratory 
decline.  Results of the 1998 numerical model indicated 
that the model predictions of inflow to the proposed 
mine were most sensitive to the width and hydraulic 
conductivity of the fault zones included in the model.  
Model predictions were found to be significantly less 
sensitive to the hydraulic conductivity of the kimberlite 
and the relatively competent country rock, and to the 
depth and extent of permafrost. 
 
Based on the results of the 1998 model, it was 
recommended that hydraulic conductivity testing and 
chemical analyses in boreholes at depths greater than 
330 m be undertaken to constrain the TDS and 
hydraulic conductivity-depth profiles.  In addition, it was 
recommended that flowmeter and fluid logging be 
undertaken to assess if the thin fractured rock zones 
identified in the review of the borehole logs were 
actually significant hydrogeologic features.     
 
2.7 1999 Field Data 
 
In the 1998 field season, twenty additional boreholes 
were drilled at the site.  A total of 75 packer tests were 
conducted along the length of fifteen of these holes.  A 
downhole camera survey was conducted in five 
boreholes.  Temperature logging was conducted in four 
boreholes and flowmeter logging was conducted in one 
borehole.  Results of all packer tests conducted from 
1996 to 1998 were compiled into a database of over 800 
tests.  
 
Following the 1998 field season, the results of downhole 
camera, temperature, and flowmeter logging together 
with packer testing and visual inspection were used to 
investigate the hydrogeologic significance of fractured 
rock zones.  Of the four boreholes in which fluid logging 
was undertaken (nearly 1300 m of logging) only two 
features of hydrogeologic significance were identified.  A 
significant feature was one that was identified through 
the fluid and flowmeter logging as a flow anomaly and 
had a corresponding high hydraulic conductivity from 
the packer tests.  Both features were found to be 
approximately 3 m wide.  This result suggested that 
significant fractured rock zones at the site are much 
more widely spaced than previously assumed.  
Observations of flow made during the advancement of 
the exploratory decline reinforced this conclusion as 
only one major inflow was observed during development 
of the decline for the full 600 m of the decline completed 
in unfrozen ground. 
 
2.8 1999 Conceptual Model 
 
In the third conceptual model for the site, country rock 
was characterized as a single hydrostratigraphic unit 
with a bulk hydraulic conductivity value.  Given the 
apparent size and spacing of the fractured rock zones 
determined from the 1999 field program, and 
considering the scale of the proposed mine, it was 
concluded that these zones were effectively included in 
the bulk hydraulic conductivity of the country rock.    

Consequently, these zones were not explicitly included 
in the model.  The 1999 conceptual model, therefore, 
consists of three main hydrostratigraphic units: country 
rock, kimberlite, and diabase dike. However, it was also 
concluded that fractured rock zones that are significant 
hydrogeologic features may be present at the site but 
have not been intersected in drilling; therefore, as a 
sensitivity, a number of such features at various 
orientations were simulated in the model to assess their 
affect on mine inflow. 
 
Based on analysis of the entire packer testing results for 
the country rock up to 570 m depth and observed 
hydraulic conductivity reductions with depth at other 
sites in the Canadian Shield (Stevenson et al., 1996 a & 
b, Ophori et al., 1996, Ophori and Chan, 1994) the 
hydraulic conductivity of country rock was assumed to 
decrease with depth.  Sufficient packer testing data to 
establish the hydraulic conductivity-depth profiles for the 
diabase dike and kimberlite units were not available for 
the site; therefore, conservatively low reductions in 
hydraulic conductivity with depth were assumed. 
 
The numerical hydrogeologic model that was developed 
based on the 1999 conceptual model was constructed 
using MODFLOW and MT3DMS (Zheng and Wang, 
1998) codes.  As with the 1998 model, the 1999 
numerical model was calibrated to inflows to the 
exploratory decline.  The 1999 numerical model was 
used to predict inflows to the open pit and underground 
mines at the site during the feasibility stage of mine 
planning. 
 
Based on the model results and available field data, it 
was recommended that mine inflow quality and quality, 
as well as hydraulic head and groundwater quality in 
monitoring wells to be installed near the mines, be 
monitored and reviewed on a continuous basis during 
mining.  These data were to be used as a basis for 
comparison with the model predicted values and the 
model recalibrated, if necessary.  The model would then 
be used for long-range planning of water management.   
  
 
3. OBSERVATIONS DURING MINING 
 
Open pit mining of the A154 N and S kimberlite pipes 
was initiated in 2002.  After approximately one and a 
half years of mining, groundwater inflows to the 
A154N/S pit were approximately two times greater than 
predicted by the base case model.  This discrepancy 
was within the range of the expected uncertainty in 
predicted pit inflow due to the uncertainty in model 
parameters; however, model simulations were 
conducted to determine the source of the observed 
discrepancy.  Multiple explanations for the difference 
between observed and predicted inflows were proposed 
at that time, including uncertainty in the hydraulic 
conductivity of shallow competent bedrock, flow through 
shallow sediments, a high conductivity pathway created 
by the flooded exploration decline, and a highly 
permeable fractured rock zone. 
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Preliminary model simulations were conducted to 
assess the most likely source of the large inflows.  
Results of these simulations indicated that the most 
likely source of the greater than predicted inflows was a 
highly permeable FRZ associated with a fault zone, 
referred to as Dewey’s Fault (Figure 6).  This fault zone 
was uncovered during mining and a survey of seepage 
in the A154 N/S conducted in late 2003 suggested that 
at least 50% of groundwater inflow to the pit originated 
from this feature.    
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The FRZ associated with Dewey’s Fault in the 
wall of the A154N/S Pit  

 
 
4. CONCEPTUAL MODEL 2004 
 
In mid-2004, a fourth revision to the conceptual model 
and corresponding numerical model for the site was 
undertaken. This included the incorporation of shallow 
sediments, weathered bedrock, a permeable FRZ 
associated with Dewey’s Fault, and the as-built 
configuration of the dike around A154N/S pit into the 
numerical model for the site (Figure 7).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Conceptual Model 2004  

The initial hydraulic properties for the weathered 
bedrock and shallow sediments were based on the 
results of hydrogeologic testing.  The contribution of 
these components to pit inflow was found to be 
significant only in the very early stages of mining.   
 
In preliminary simulations, the FRZ associated with 
Dewey’s Fault was assumed to be 30 m wide with a 
hydraulic conductivity of 3 x 10-5 m/s from the ground 
surface to 500 m depth.  Beyond 500 m depth, the 
hydraulic conductivity of the fault was assumed to be 
1 x 10-5 m/s.   Based on these modelling results in was 
recommended that additional testing be undertaken in 
the FRZ associated with Dewey’s Fault to accurately 
assess its hydrogeologic properties and width. 
 
 
5. DEWEY'S FAULT 
  
The field program to investigate the hydrogeologic 
properties of Dewey’s Fault included core logging and 
the collection of fluid temperature and electrical 
conductivity, caliper, optical and acoustic televiewer 
logs.  In addition, both packer tests and a pumping test 
were performed in the fault zone.   
 
The results of the field investigations indicated that the 
FRZ associated with Dewey’s Fault is about 100 m wide 
and the inclination is approximately vertical.  The FRZ 
does not consist of a uniform highly permeable zone, 
but is composed of sparsely spaced highly permeable 
discontinuities within a lower permeability pseudo-
matrix.  The fracture spacing in Dewey’s Fault was 
found to be virtually identical to that of the relatively 
competent bedrock.  Depending on the orientation of a 
borehole drilled within the FRZ, none or many of these 
highly permeable fractures would be intersected.  In 
addition, as shown on Figure 8, the probability 
distributions for the hydraulic conductivities measured 
from packer testing in the FRZ and the country rock 
overlap to a large degree.    Because of the nature and 
distribution of fractures within Dewey’s Fault it was 
found that all the logging data (televiewer, core logging, 
and fluid logging) needed be used together in order to 
identify the FRZ.  Figure 9 shows an example of a data 
synthesis plot that includes all these data for one of the 
boreholes and the identification of the FRZ associated 
with Dewey’s Fault as a zone of enhanced hydraulic 
conductivity. 
 
The late 2004 re-calibration of the numerical 
hydrogeologic model involved revisions to the original 
numerical model of the site so that the model predicted 
water quality and quantity matched the measured values 
in the groundwater inflow to the A154 Pit.  During 
calibration, the progress of mining was simulated using 
as-build pit shells provided by DDMI for October 2003, 
March 2004, and July 2004.  The model was also 
calibrated to the response observed during 
hydrogeologic testing of Dewey’s Fault that was 
undertaken in 2004, water level drawdowns measured in 
piezometers along the dike perimeter since the initiation 
of mining in the A154N/S pit and to observations made 
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during seepage surveys conducted in October 2003 and 
July 2004.  
 
During model calibration, the model was run repeatedly 
and the model parameters were adjusted until model 
predictions were in reasonably good agreement with 
field observations and measurements.  During 
calibration, the hydraulic conductivity of the competent 
bedrock at the site was virtually unchanged from the 
value used in the 1999 model.    
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Conceptual Representation of the Results of 
Packer Testing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Borehole Data Synthesis Plot 
 
An evaluation of the predictive capabilities of the site-
scale model was performed in 2005.  In this evaluation 
the numerical model that was calibrated in late 2004 

was used to predict inflows to the 154N/S Pit and the 
hydraulic heads in the pit walls for 2005.  These 
predictions were then compared to the observed values 
for 2005.  If the predicted and observed values were 
similar then the model was considered to be verified and 
capable of providing reasonably accurate predictions of 
future mine inflows and hydraulic heads.  These model 
simulations were done without any modification to 
hydrogeologic parameters that were used in the model 
calibration of late 2004.    
 
A comparison of model predicted quantity and quality of 
inflow to the A154 N/S Pit to the observed values up to 
the end of 2005 indicated that the model provided an 
accurate predictive tool for inflow quantity and quality.  
 
 
6. DISCUSSION 
 
The development of the conceptual hydrogeologic 
models and their corresponding numerical models for 
the Diavik Project followed a logical and usually 
effective methodology.  The results of each successive 
model were used to direct future field investigations.  
The aim of each of these investigations was to develop 
a more accurate hydrogeologic model. 
 
Once mining began at Diavik, it was found that the final 
pre-mining model underestimated the quantity of 
groundwater inflow to the mine.  Although the hydraulic 
conductivity of the relatively competent country rock was 
found to be reasonably accurate, a narrow FRZ 
(representing less than 10% of the open pit wall) of 
enhanced permeability resulted in nearly twice as much 
inflow as was predicted by the final pre-mining model.   
 
Testing during mining indicated that the FRZ was not a 
zone of uniform high permeability but was comprised of 
highly permeable vertical fractures that were sparsely 
spaced within the zone.  These characteristics made it 
difficult to detect this zone using only core logging and 
packer tests in individual boreholes.  Rather several 
downhole investigative methods including core logging, 
packer testing, televiewer and fluid logging, were used 
together to identify a zone of enhanced permeability 
associated with Dewey’s Fault.   
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