47. Online Collaboration and Management Tools (Part 1)

networking
Update:  This blog was originally published March 2016.   However like all things, the online world keeps evolving. So I have updated Part 1 and Part 2 of the blog (Dec 2018).  I added new software suggestions and removed some.
As part of a side business, I have been working alongside a team of software developers. It has been a good learning experience for me to see how the tech world does things compared to how the mining industry likes to work. We see a lot of private equity flowing into tech and less into mining, so they must be doing something right.
The tech start-up industry has developed its own set of jargon.  Common terms are agile management, lean start-ups, disruption, minimum viable products, pings, fail fast, and sprints.
Some of their work approaches do not make sense for the mining industry where one doesn’t have the luxury of using trial-and-error and customer feedback to help complete a project.
For software, the attitude is get it out the door fast and your customers will then tell you what fixes are needed. In mining you want to get it right the first time.  Having said that, some mining people will say they have seen 43-101 technical reports that follow the “wait for customer feedback” model.
Now where the tech industry can provide us with some guidance is in the implementation of collaboration tools. It is becoming more common for software developers to work remotely.  To collaborate they use the technology available or they develop new technology to meet their needs.  Mining teams are also working more and more from remote offices these days.

What are the collaboration software available

The following is a partial list (Part 1) of free software tools that I have used, mainly because I was forced to. With some hesitation at first, I have subsequently found the tools easy to use.  Many of them can definitely be applied in the mining industry with remote and diverse study teams.
There are a lot more tech tools out there but my list includes some that I have personally used. Most of these are free to begin with, and enhanced features are available at a minimal cost. However even the free versions are functional and can be used to build a comfort level in the team. Most of them provide both web based access and mobile access so even when you’re on the road you can still use them and contribute.

Trello

Trello: If you want to create a “to-do list” or task list for your team, this is the software to use. Imagine a bunch of  post-it notes that you can place under different categories, assign persons to each note, attached a file to the note if you wish, and then have back and forth discussions within each note.   Once a task is done, just drag the note to another category (e.g. “In Progress”, “Completed”). Anyone on the team can be invited to the Trello Board and can collaborate. See the image below for an example Trello screenshot.   This is a great tool for helping to manage tasks in a mining study.

 

Trello screenshot

Slack

Slack: If you want to maintain a running dialogue of group discussions that invited team members can follow and join in on, then Slack (a Canadian company) is for you. It can replace the long confusing back-and-forth emails that we commonly see.  If someone forgets to “reply all” the rest of the team is out of the loop. See the image below for an example Slack screenshot. It’s great for discussions among the team.  You can also have private one-on-one discussions or wide open team discussions.  You can attach files too and you can get pinged when something new is added. It provides permanent record of conversations and decisions.

Slack Screenshot

Mural

Mural:  Mural is a recent innovation to solve the issue that remote teams have of not sitting in the same room and writing ideas down on a whiteboard.   For that last while, there was no good white boarding software out there but I understand that Mural fills the gap.  i have not used it so cannot vouch for its simplicity, however it seems to be catching with the tech developers.  The screenshot below shows the type of inter-actions possble.  Each person has access to write on the whiteboard.
Basecamp: is similar program to Slack that incorporates features from both the above and some people swear by this tool. I have not personally used it so cannot vouch for it, but some say it is very good.

Conclusion

The bottom line is that there is a lot of good stuff out there, readily available, much of it free, and can facilitate collaboration among your teams. Just because its tech industry related, don’t assume it wouldn’t have an application in the mining world.  As millennials enter the mining workforce, these tools may gain a foothold.
To read about even more collaborative tools, take a look at Part 2 of this blog.  Comments on any of the discussions or software are appreciated.

46. Tailings Disposal Method Risk

mine tailings
After the Mt Polley and Samarco tailings failures, there have been ongoing discussions about the benefits of filtered (dry stack) tailings as the only way to eliminate the risk of catastrophic failure. Mining companies would all like to see risk reductions at their projects.

Filtered tailings stack

However what mining companies don’t like to see are the capital and operating costs associated with dry stacking. The filtering cost and tailings transport cost are both higher than for conventional tailings disposal. Obviously this cost increase gets offset against improved environmental risk and simpler closure.

So what is a company to do?

In my experience when designing a new mining project, all companies at some point complete a trade-off study for different tailings disposal methods and disposal sites. Contrary to some environmental narratives, mining companies really do want to know about their different tailings options.  They would all adopt the dry stack approach if it was the most advantageous method.
The mining companies are fully aware of the benefits but the dilemma is the cost and being able to somehow justify the technology. Complicating their decision, companies also have other options for reducing their tailings risk.

The  final decision can get complex.

In a tailings risk analysis, people will use a risk-weighting approach to assign an expected economic impact to their tailings plans. For example, if the cost of a failure is $200 million and the risk is 0.1%, then the Expected Cost is $200,000. The problem with this is its based on a theoretical calculation on an assumed likelihood of failure.   In reality either the dam will fail or it won’t.  So failure remediation money will be spent ($200M) or it won’t be spent ($zero), it won’t be partially spent ($200k).
The accepted tailings risk therefore becomes a subjective factor.
While implementing a dry stack may reduce the risk of catastrophic failure to near zero, implementing a $100,000 per year monitoring program on a conventional tailings pond will reduce its risk.
Implementing a $500,000 per year monitoring program would reduce that risk even further.
Installing in a water treatment plant to enable periodic water releases may further lower the tailings risk.
The company can look at various mitigation options to keep lowering their risk, although none of the options would necessarily bring the risk down to zero. Ultimately the company could compare the various risk mitigation options against the dry stack costs in order to arrive at an optimal path forward.

What level of risk is acceptable?

So the question ultimately becomes how low does one need to reduce the tailings risk before it is acceptable to shareholders, regulators, and the public. I don’t think the answer is that one must lower the risk down to zero. There are not many things in today’s world that have zero risk. Driving a car, air travel, shipping oil by ocean tanker, having a gas furnace in your house..none of these have zero risk yet we accept them as part of living.
Environmental groups continually discuss ways of forcing regulators and mining companies to take action against the risk of tailings failure. This is commendable.
However they generally fail to provide any guidance on what level of risk would be acceptable to them or to the public. It seems to be difficult for these groups to define what an acceptable risk is. They offer no solutions, other than either zero risk or shut down all mining.

Conclusion

We know that mining is here to stay so we all should work together towards solutions.
The solutions need to be realistic in order to be taken seriously and to play a real role in redefining tailings disposal. Dry stack may not be the only solution and we should be looking for more ways to improve tailings disposal.
Since these other options don’t seem to be available yet, dry stack tends to offer the best solution in most circumstances.  I have written another blog on this topic “Fluid Tailings – Time to Kick The Habit?”

45. Do Any Junior Producers Model a Gold ETF?

junior mining company
I have often wondered if any of the smaller gold producers have ever considered modelling their business plan similar to a gold Exchange Traded Fund (“ETF”).
This hybrid business model may be a way for companies to provide shareholders a way to leverage themselves to physical gold rather than leveraging to the performance of a mine.

Let me explain further

Consider two identical small mining companies each starting up a new mine. Their projects are identical; 2 million gold ounces in reserves with annual production rate of 200,000 ounces with a 10 year mine life. On an annual basis, let’s assume their annual operating costs and debt repayments could be paid by the revenue from selling 180,000 ounces of gold. This would leave 20,000 gold ounces as “profit”. The question is what to do with those 20,000 ounces?

Gold Dore

Company A

Company A sells their entire gold production each year. At $1200/oz, the 20,000 oz gold “profit” would yield $24 million. Income taxes would be paid on this and the remaining cash can be spent or saved.
Company A may decide to spend more on head offices costs by adding more people, or they may spend money on exploration, or they could look at an acquisition to grow the company. There are plenty of ways to use this extra money, but returning it to shareholders as a dividend isn’t typically one of them.
Now let’s jump forward several years; 8 years for example. Company A may have been successful on grassroots exploration and added new reserves but historically exploration odds are working against them. If they actually saved a portion of the annual profit, say $10M of the $24M, after 8 years they may have $80M in cash reserves.

Company B

Company B only sells 180,000 ounces of gold each year to cover costs.  It puts the remaining 20,000 ounces into inventory. Their annual profit-loss statement shows breakeven status since their gold sales only cover their financial commitments. In this scenario, after 8 years Company B would have 160,000 gold ounces in inventory, valued at $192 million at a $1200 gold price.
If you’re an investor looking at both these companies in the latter stages of their mine life, which one would you rather invest in?
Company A has 400,000 ounces (2 years) remaining in mineral reserves and $80M cash in the bank. Company B also has 400,000 ounces of mineral reserves and $192 million worth of gold in the vault. If I’m a bullish gold investor and foresee a $1600/oz gold price, then to me Company B might theoretically have $256M in the vault (160k oz x $1600). If I’m a super bullish, their gold inventory could be worth a lot more..theoretically.

Which company is worth more?

I assume that the enterprise value (and stock price) of Company A would be based on its remaining reserves at some $/oz factor plus its cash in the bank. Company B could be valued the same way plus its gold inventory. So for me Company B may be a much better investment than Company A in the latter stages of its mine life. In fact Company B could still persist as an entity after the mine has shutdown simply as a “fund” that holds physical gold. If I am a gold investor, then Company B as an investment asset might be of more interest to me.
If Company A had good exploration results and spend money wisely, then it may have more value but not all companies are successful down this path.

Conclusion

It appears that most of the time companies sell their entire annual gold production to try to show profit on the annual income statement. This puts cash in the bank and shows “earning per share”.
My question is why not stockpile the extra gold and wait for gold prices to rise?  This might be an option if the company doesn’t really need the money now or doesn’t plan to gamble on exploration or acquisitions.
This concept wouldn’t be a model for all small miners but might be suitable for a select few companies to target certain types of gold investors.
They could provide an alternative mining investment that might be especially interesting in the last years of a mine life. Who really wants to buy shares in a company who’s mine is nearly depleted?  I might buy shares, if they still hold a lot of gold.

44. Higher Metal Prices – Should We Lower the Cut-Off Grade?

When metals prices are high, we are generally told that we should lower the cutoff grade. Our cutoff grade versus metal price formula tells us this is the correct thing do. Our grade-tonnage curve reaffirms this since we will now have more ounces of gold in the mineral reserve.

But is lowering the cutoff grade really the right thing to do?

Books have been written on the subject of cutoff grades where readers can get all kinds of detailed logic and calculations using Greek symbols (F = δV* − dV*/dT). Here is one well known book by Ken Lane, available on Amazon HERE.
Recently we have seen a trend of higher cash costs at operating mines when commodity prices are high. Why is this?
It may be due to higher cost operating inputs due to increasing labour rates or supplies. It may also be partly due to the lowering of cutoff grades.  This lowers the head grade, which then requires more tonnes to be milled to produce the same quantity of metal.
A mining construction manager once said to me that he never understood us mining guys who lower the cutoff grade when gold prices increase. His concern was that since the plant throughput rate is fixed, when gold prices are high we suddenly decide to lower the head grade and produce fewer and higher cost ounces of gold.

Do the opposite

His point was that we should do the opposite.  When prices are high, we should produce more ounces of gold, not fewer. In essence, periods when supply is low (or demand is high) may not be the right time to further cut  supply by lowering head grades.
Now this is the point where the grade-tonnage curve comes into play.
Certainly one can lower the cutoff grade, lower the head grade and produce fewer ounces of gold.  The upside being an extension in the mine life.  A company can report more ounces in reserves and perhaps the overall image of the company looks better (if it is being valued on reserves).

What if metal prices drop back?

The problem is that there is no guarantee that metal prices will remain where they are and the new lower cutoff grade will remain where it is. If the metal prices drop back down, the cutoff grade will be increased and the mineral reserve will revert back to where it was. All that was really done was accept a year of lower metal production for no real long term benefit.
This trade-off  contrasts a short term vision (i.e. maximizing annual production) against a long term vision (i.e. extending mineral reserves).

Conclusion

The bottom line is that there is no simple answer on what to do with the cutoff grades.  Hence there is a need to write books about it.
Different companies have different corporate objectives and each mining project will be unique with regards to the impacts of cutoff grade changes on the orebody.
I would like to caution that one should be mindful when plugging in new metal prices, and then running off to the mine operations department with the new cutoff grade. One should fully understand both the long term and short term impacts of that decision.

43. Mining Fads and the Herd Mentality

minerals
Have worked in the mining industry for over the last 35 years it is always interesting to watch the herd mentality that exists.  Its obvious how easily we all get caught chasing the latest fads.
All it takes is a short term spike in a commodity price or a big discovery somewhere and then off everyone goes running in that direction.  It doesn’t matter the rationale driving the event, all we know is that we need to be in there and our investors want to be in there too.

Just don’t be the last on the bandwagon

Based on my experience, the fads that grab us can include commodities, locations, or technologies. The mining industry is very flexible in that regard. I’ll give a few examples that I have seen.  You probably have even more from your own experience.

Commodity Fads

It seems that as soon as there is a price spike or positive market narrative, a commodity can take on a life of its own.  The following list gives a few examples and when you think about them ask how many actually came into successful production.
  • Potash: a few years ago potash prices spiked and potash properties were all the fad no matter where they were located around the globe, be it Canada, Russia, Ethiopia, Thailand, Brazil, etc.  That has largely fizzled out as prices returned to normal.
  • Lithium / Graphite:  as soon as green battery technology started to be promoted in the news, miners couldn’t run fast enough to pick up the lithium properties.  The same idea hold for the graphite, vanadium, cobalt, and rare earth categories.  Parts of the sector are still hot in 2018 although lithium stories seem to have run their course.
  • Uranium: years ago uranium prices spiked and Ur properties were hot everywhere.  Prices have dropped but seem to be ramping up in late 2018.
  • Nickel: years ago a spike in nickel prices caused a surge in nickel properties, whether it was sulphide nickel, laterite nickel, or other forms.
  • Iron Ore: in conjunction with the Chinese construction boom, iron ore properties were hot around the globe, in high cost or low cost jurisdictions, it didn’t matter where the property was.  Iron is still being pursued but mega scale projects always overhang the market.
  • Diamonds: in conjunction with the first diamond discoveries in Canada in the 1990’s, diamond properties became hot, whether in the Canada or around the globe.  If you couldn’t get a property in Canada’s NWT boom area, anywhere else was fine.
  • China in general: a few years ago every base metal project was thought of as either a potential supplier to China or a potential acquisition for Chinese companies.  As long as it could meet Chinese investor interest it was good.

Location Fads

Mineral claim map exampleWe have all seen the staking rushes that occur when a world class prospect is discovered.  I’m sure we can all recall getting the large claim maps (as shown) with their multicolored graphics showing the patchwork of acquisitions around a discovery. PDAC was great for distributing these.  They were well done and interesting to study.
Picking up properties in hot areas became the fad and share prices would move upwards regardless of whether there was any favorable geology on the property.  Who recalls the following?
  • Voisey Bay: with a mad staking rush around there, with nothing else really paying off in the long run.
  • Saskatchewan:  the potash staking rush where almost every inch of the potash zone was staked with only a couple of companies eventually moving forward and only one going into production.
  • Indonesia: during Bre-X people could not acquire properties in Indonesia fast enough.
  • NWT:  where the diamond property staking rush was crazy in the mid 1990’s.

Technology Fads

Even mining or processing technologies could get caught up in somewhat of a wave and become a fad for further study.  Sometimes this is driven by suppliers or consultants.  Who can recall…
  • Paste Tailings: with numerous conferences and consultants promoting thickened or paste tailings technology as the panacea.  This lead to numerous studies related to thickening, pumping, and disposal at each mine.
  • Block Caving: whereby in order to deliver high tonnages at low cost, bulk underground mining was being promoted.  Everyone wanted their underground project to be a low cost caving style operation.
  • High Pressure Grinding Rolls (HPGR): where process consultants would highlight HPGR as the new replacement for conventional grinding mills.  I’m not sure this technology has taken the industry by storm as they were hoping in the 1990’s.
  • IPCC: whereby inpit crushing and conveying systems were being promoted in many articles and global conferences as the solution to operating cost issues.  I think implementation of IPCC technology isn’t as simple as envisioned and I’m not aware of many cases of its successful implementation.
  • Dot.com: in the early 2000’s many junior miners left exploration behind and transitioned to the dot.com boom, a fad that essentially went nowhere for most.
  • Medical marijuana: it seemed to be the hopeful future for some junior miners in 2000 and still today. The new marijuana entrepreneurs are building on the junior mining model of heavy promotion with skyrocketing valuations and questionable economics.
  • Pre-concentration: this seems to be a growing technology that may be gaining momentum.  It isn’t new technology and it will definitely have its benefits.  However a big stumbling block is how many deposits are actually suitable for its application.  I have written more about this technology “Pre-Concentration – Savior or Not?

Conclusion

Have I missed anything?
The bottom line is that over the years it has been interesting to watch the mining industry react to events.  Sometimes it seems like we’re passengers on a boat, running from one side to other side and then back again.  Unfortunately that doesn’t necessarily make for smooth sailing and can result in upset stomachs.
What’s the next fad? I don’t know but if you can predict it you can probably make a lot of money.

 

42. Global Tax Regimes – How Do They Compare?

mining economics
Update: This blog was originally written in Feb 2016, but has been updated in Dec 2018.
As a reminder for all QP’s doing economic analysis for PEA’s, don’t forget that one needs to present the economic results on an after-tax basis.
Every once in a while I still see PEA technical reports issued with only pre-tax financials.  That report is likely to get red- flagged by the securities regulators.  The company will need to amend their press release and technical report  to provide the after tax results.    No harm done other than some red faces.

Taxes can be complicated

When doing a tax calculation in your model, where can you find international tax information?  PWC has a very useful tax-related website.  The weblink below was sent to me by one of my industry colleagues and I thought it would be good to share it.
The PWC micro-site provides a host of tax and royalty information for selected countries.  The page is located at http://www.pwc.com/gx/en/industries/energy-utilities-mining/mining/tax.html
On the site they have a searchable database for tax information for specific countries.
The PWC tax and financial information includes topics such as:
  • Corporate tax rates
  • Excess profits taxes
  • Mineral taxes for different commodities
  • Mineral royalties
  • Rates of permissible amortization
  • VAT and other regulated payments
  • Export taxes
  • Withholding taxes
  • Fiscal stability agreements
  • Social contribution requirements
PWC has a great web site and hopefully they will keep the information up to date since tax changes happen constantly.   It would be nice to see them add more countries to their 23 country database but it’s already good.  Check it out.

 

41. Resource Estimates – Are Independent Audits A Good Idea?

mining reserves
Question: How important is the integrity of a tailings dam to the successful operation of a mine?
Answer: Very important.
Tailings dam stability is so important that in some jurisdictions regulators may be requiring that mining companies have third party independent review boards or third party audits done on their tailings dams.  The feeling is that, although a reputable consultant may be doing the dam design, there is still a need for some outside oversight.
Differences in interpretation, experience, or errors of omission are a possibility regardless of who does the design.  Hence a second set of eyes can be beneficial.

Is the resource estimate important?

Next question is how important is the integrity of the resource and reserve estimate to the successful operation of a mine?
Answer: Very important.  The mine life, project economics, and shareholder value all rely on it.     So why aren’t a second set of eyes or third party audits very common?

NI 43-101 was the first step

In the years prior to 43-101, junior mining companies could produce their own resource estimates and disclose the results publicly.  With the advent of NI 43-101, a second set of eyes was introduced whereby an independent QP  could review the company’s internal resource and/or prepare their own estimate.  Now the QP ultimately takes legal responsible for the estimate.
Nowadays most small companies do not develop their own in-house resource estimates.  The task is generally awarded to an independent QP.

Resource estimation is a special skill

Possibly companies don’t prepare their own resource estimates due to the specialization needed in modelling and geostatistics. Maybe its due to the skills needed to operate block modeling software.   Maybe the companies feel that doing their own internal resource estimate is a waste of time since an independent QP will be doing the work anyway.

The QP is the final answer..or is it?

Currently it seems the project resource estimate is prepared solely by the QP or a team of QP’s.   In most cases this resource gets published without any other oversight. In other words no second set of eyes has taken a look at it.  We assume the QP is a qualified expert, their judgement is without question, and their work is error free.

Leapfrog Model

As we have seen, some resources estimates have been mishandled and disciplinary actions have been taken against QP’s.   The conclusion is that not all QP’s are perfect.
Just because someone meets the requirements to be a Competent Person or a Qualified Person does not automatically mean they are competent or qualified. Geological modeling is not an exact science and will be based on their personal experience.

What is good practice?

The question being asked is whether it would be good practice for companies to have a second set of eyes take a look at their resource estimates developed by independent QP’s?
Where I have been involved in due diligence for acquisitions or mergers, it is not uncommon for one side to rebuild the resource model with their own technical team.  They don’t have 100% confidence in the original resource handed over to them.   The first thing asked is for the drill hole database.
One downside to a third party review is the added cost to the owner.
Another downside is that when one consultant reviews another consultant’s work there is a tendency to have a list of concerns. Some of these may not be material, which then muddles the conclusion of the review.
On the positive side, a third party review may identify serious interpretation issues or judgement decisions that could be fatal to the resource.
If tailings dams are so important that they require a second set of eyes, why not the resource estimate?  After all, it is the foundation of it all.

40. Disrupt Mining Challenge – Watch for it at PDAC

Update:  This blog was originally written in January 2016, and has been updated for Jan 2018.

Gold Rush Challenge

In 2016 at PDAC, Integra Gold held the first the Gold Rush Challenge.  It was an innovative event for the mining industry.  It was following along on the footsteps of the Goldcorp Challenge held way back in 2001.
The Integra Gold Rush Challenge was a contest whereby entrants were given access to a geological database and asked to prepare submissions presenting the best prospects for the next gold discovery on the Lamaque property.  Winners would get a share of the C$1 million prize.
Integra Gold hoped that the contest would expand their access to quality people outside their company enabling their own in-house geological team to focus on other exploration projects.   In total 1,342 entrants from over 83 countries registered to compete in the challenge.  A team from SGS Canada won the prize.

Then Disrupt Mining came along

In 2017, its seem the next step in the innovation process was the creation of Disrupt Mining sponsoerd by Goldcorp.  Companies and teams developing new technologies would compete to win a $1 million prize.
In 2017, the co-winning teams were from Cementation Canada (new hoisting technology) and Kore Geosystems (data analystics for decision making).
In 2018, the winning team was from Acoustic Zoom, an new way to undertake seismic surveys.

The 2019 winners will be announced at PDAC.  The entry deadline has passed so you’re out of luck for this year.

Conclusion

At PDAC there are always a lot of things to do, from networking, visiting booths, presentations, trade shows, gala dinners, and hospitality suites.
Now Disrupt Mining brings another event for your PDAC agenda.

39. Measured vs. Indicated Resources – Do We Treat Them the Same?

measured and indicated
One of the first things we normally look at when examining a resource estimate is how much of the resource is classified as Measured or Indicated (“M+I”) compared to the Inferred tonnage.  It is important to understand the uncertainty in the estimate and how much the Inferred proportion contributes.   Having said that, I think we tend to focus less on the split between the Measured and Indicated tonnages.

Inferred resources have a role

We are all aware of the regulatory limitations imposed by Inferred resources in mining studies.  They are speculative in nature and hence cannot be used in the economic models for pre-feasibility and feasibility studies. However Inferred resource can be used for production planing in a Preliminary Economic Assessment (“PEA”).
Inferred resources are so speculative that one cannot legally add them to the Measure and Indicated tonnages in a resource statement (although that is what everyone does).   I don’t really understand the concern with a mineral resource statement if it includes a row that adds M+I tonnage with Inferred tonnes, as long as everything is transparent.
When a PEA mining schedule is developed, the three resource classifications can be combined into a single tonnage value.  However in the resource statement the M+I+I cannot be totaled.  A bit contradictory.

Are Measured resources important?

It appears to me that companies are more interested in what resource tonnage meets the M+I threshold but are not as concerned about the tonnage split between Measured and Indicated.  It seems that M+I are largely being viewed the same.  Since both Measured and Indicated resources can be used in a feasibility economic analysis, does it matter if the tonnage is 100% Measured (Proven) or 100% Indicated (Probable)?
The NI 43-101 and CIM guidelines provide definitions for Measured and Indicated resources but do not specify any different treatment like they do for the Inferred resources.
CIM Resources to Mineral Reserves

Relationship between Mineral Reserves and Mineral Resources (CIM Definition Standards).

Payback Period and Measured Resource

In my past experience with feasibility studies, some people applied a  rule-of-thumb that the majority of the tonnage mined during the payback period must consist of Measure resource (i.e. Proven reserve).
The goal was to reduce project risk by ensuring the production tonnage providing the capital recovery is based on the resource with the highest certainty.
Generally I do not see this requirement used often, although I am not aware of what everyone is doing in every study.   I realize there is a cost, and possibly a significant cost, to convert Indicated resource to Measured so there may be some hesitation in this approach. Hence it seems to be simpler for everyone to view the Measured and Indicated tonnages the same way.

Conclusion

NI 43-101 specifies how the Inferred resource can and cannot be utilized.  Is it a matter of time before the regulators start specifying how Measured and Indicated resources must be used?  There is some potential merit to this idea, however adding more regulation (and cost) to an already burdened industry would not be helpful.
Perhaps in the interest of transparency, feasibility studies should add two new rows to the bottom of the production schedule. These rows would show how the annual processing tonnages are split between Proven and Probable reserves. This enables one to can get a sense of the resource risk in the early years of the project.  Given the mining software available today, it isn’t hard to provide this additional detail.

38. Claim Fees Paid for a Royalty Interest – Good Deal or Not?

mineral property acquisition
In 2016 I read several articles about how the junior mining industry must innovate to stay relevant.    Innovation and changing with the times are what is needed in this economic climate.
One company that was trying something new is Abitibi Royalties.  They were promoting a new way for them to acquire royalty interests in early stage properties.  They were offering to fund the claim fees on behalf of the property owner in return for a royalty.
Their corporate website states that they would pay, for a specified period of time, the claim fees/taxes related to existing mineral properties or related to the staking of new mineral properties.
In return, Abitibi Royalties would be granted a net smelter royalty (“NSR”) on the property.  It may be a gamble, but it’s not a high stakes gamble given the relatively low investment needed.

Not just anywhere

Abitibi were specifically targeting exploration properties near an operating mine in the Americas. They were keeping jurisdiction risk to a minimum.   Abitibi stated that their due diligence and decision-making process was fast, generally within 48 hours.  No waiting around here but likely this is possible due to the low investment required and often the lack of geological information to do actually do a due diligence on.
To give some recent examples, in a December 14, 2015 press release, Abitibi state that the intend to acquire a 2% NSR on two claims in Quebec and will pay approximately $11,700 and reimburse the claim owner approximately $13,750 in future exploration expenses. This cash will be used by the owner towards paying claim renewal fees and exploration work commitments due in 2016.   Upon completion of the transaction, these will be the ninth and tenth royalties acquired through the Abitibi Royalty Search.  For comparison, some of their other royalty acquisitions cost were in the range of $5,000 to $10,000 each (per year I assume).   I think that those NSR interests are being acquired quite cheaply.
The benefit to the property owner may be twofold; they may have no other funding options available and they are building a relationship with a group that will have an interest in helping the project move forward.  The downside is that they have now encumbered that property with a NSR royalty going forward.
The benefit to Abitibi Royalties is that they have acquired an early stage NSR royalty quite cheaply although there will be significant uncertainty about ever seeing any royalty payments from the project.   Abitibi may also have to continue to make ongoing payments to ensure the claims remain in good standing with the owner.
It’s good to see some degree of innovation at work here, although the method of promotion for the concept may be more innovative than the concept itself. Unfortunately these Abitibi cash injections investments are not enough to pay for much actual exploration on the property and this is where the further innovation is required, whether through crowd funding, private equity, or some other means.   I’m curious to see if other companies will follow the Abitibi royalty model but extend it to foreign and more risky properties.

37. 3D Model Printing – Who To Contact?

One of the technologies that is still getting a lot of press is 3D printing.  It seems new articles appear daily describing some fresh and novel use. Everything from home construction, food preparation, medical supplies, and industrial applications, 3D printing continues to find new applications in a wide range of disciplines.

Mining can take advantage of 3D printing

In a previous blog “3D Printing – A Simple Idea”, I discussed the helpfulness of printing 3D topographic models for the team members of a mining study. I was recently contacted by a consulting firm in Texas that specializes in printing 3D mining models. Here is their story and a few model images as provided to me by Matt Blattman of Blattman Brothers Consulting. (www.blattbros.com/3dprinting)

Blattman Brothers Consulting

Their 3D printed models are used in the same way geologists and mining engineers have employed models for decades. In the past we saw the physical models made of stacked mylar or plexi-glass maps, wood or foam core. We recognized that there is value in taking two dimensional sections or plan maps and making a 3D representation.  This provides more information than those viewed on a computer screen.
Physical models convey scale, interactions and scope in ways that no other method can. Technology like 3D printing improves the model-making process by allowing the addition of high def orthophotos, reducing the model cost, increasing its precision and delivery time.
Currently 3D models can be made in a variety of materials, but the primary three are extruded plastic, gypsum powder, or acrylics.
  • Plastic models (ABS or PLA) are cheap, fast and can created on relatively inexpensive, hobbyist printers. The downside to these models is that the number of colors available in a single model are limited, typically a single color.
  • Powder-based printers can typically print in 6.5M colors, allowing for vibrant, photo-realistic colors and infinite choices for title blocks, logos and artistic techniques. However, gypsum models can be as fragile as porcelain and require some care in handling.
  • Acrylic models allow for translucent printing (“looking into the ground to see the geological structure”) and are more durable than the gypsum. Nevertheless, acrylic models are significantly more expensive than the other two types and the color palettes are limited.
Here are some examples.
Leapfrog Model

Leapfrog Model

Geological Model in Acrylic

Acrylic Model

Powder Based 3D Model

Powder Based 3D Model

Powder Based 3D Model

Powder Based 3D Model

Besides having another toy on your desk beside your stress ball, why not print off your mine plan, or print the geology shapes and topography? It’s all about communicating highly technical data to a non-technical audience, whether that audience is a permitting authority, the general public, or maybe even company management.
The ability to grasp a map or technical drawing is a learned skill and not everyone has it. If you’ve just spent $20M on a feasibility study, why assume that the attendees in a public meeting will fully appreciate the scale and overall impact of your proposed project with 2D maps?
That message can be better conveyed with a model that is easily understood. One of Blattman’s clients, Luck Stone, recently described how they use their 3D printed models in this video.

Blattman’s models are created from the same 3D digital data already in use by most companies involved in geological modeling and mine design. Other than the units (meters versus millimeters), the triangulated surfaces created by the software are no different than those created by mechanical or artistic 3D modeling programs.
While many 3D printing services are available on the market, not all of them are able to speak “mining”. They may not be able to walk the skilled geologist or mining engineer through the process of creating the necessary digital formats and that’s where Blattman comes in. With more than 20 years of mining experience and having already gone through the 3D printing learning curve, they can assist any natural resource company through the process, either as a full-service/turn-key project or just to advise the client on how to prepare their own files.

Conclusion

The bottom line is that 3D printing is here to stay and its getting better each year.   Go ahead and check out the technology to see if it can advance your path forward .
We would be interested in hearing about any experiences your have had with 3D modelling, pro’s and con’s.

36. Fluid Tailings – Time to Kick The Habit?

dry stack tailings
Smoking… we constantly hear about the negative effects of it.  We all know of people that have died due to lung cancer or other smoking related causes.  However we also know people that have smoked their entire lives yet lived into their eighties.  Yet there is still a push to get people to kick the smoking habit because statistically it is better for them.

Short term pain for long term gain.

Let’s compare all of that with the concept of fluid tailings storage.
Tailings. Those of us in the mining industry constantly hear about the negative impacts of tailings storage.  We know numerous mines have had failures resulting in fatalities and catastrophic damage. Check out the horrific example video below. It appears there are people walking or driving mid-way up the dam face.
We also know of many mines that have used fluid tailings their entire operating lives without any incidents.
The question for me has become whether the mining industry should kick the habit of fluid tailings storage even though no failures occurred in many circumstances?

Quitting isn’t easy

Quitting smoking takes real effort, some pain, maybe a change in lifestyle, but most importantly an overall commitment to quit.   It isn’t easy but pays off in the long run.
The same holds for tailings storage.
Moving away from fluid tailings storage requires real effort, some pain, a change in operating style, and a commitment to quit.  It won’t be easy but will pay off in the long run by avoiding major tailings incidents, less negative press, and fewer environmental permitting issues.  No longer will consultants and regulators be disputing factors of safety of 1.3 versus 1.5, when they could be discussing factors of safety of 5 versus 10.
Quitting fluid tailings storage may bring relief to stakeholders, shareholders, regulators, and mine management.  They’ll all sleep better at night knowing there isn’t a large mass of fluid being restrained simply by a dam at a factor of safety of 1.5.  Engineers say they can design dams that will be stable for perpetuity.  I tend to agree with that statement, however that is no guarantee for all tailings dams.

Conclusion

The bottom line is that no one wants to sit downwind of a smoker and no one wants to live downstream of a tailings dam.  Perhaps it is time for the mining industry to kick the habit of fluid tailings storage, regardless of the cost and discomfort. Short term pain for long term gain.
I have written another blog on the issue of tailings management risk “Tailings Disposal Method Risk“.