Articles tagged with: PEA

48. Online Collaboration and Management Tools (Part 2)

networking
This blog is the Part 2 continuation of a prior post regarding collaboration software tools that mining teams should consider.   Here are a few more ideas I’d like to share, having found that these are great to have in your toolbox.

Zoom (for conferencing)

A great tool for video conferencing is zoom (https://support.zoom.us/hc/en-us).  Its similar to Skype but has added features.
It allows video conferencing, screen sharing, screen swapping.
There is a free version that provides some great functionality.

 

 

 

G-suite and miningG-Suite

Is the family of Google Drive, Docs, Sheets, and Slides online services.
Group collaboration can be frustrating using spreadsheets or text documents.  We typically end up with different versions of the same document floating around.  No one is sure whether they are editing the most recent version or which version they should be editing.
With G-Suite (Google Sheets and Google Docs) you can create online spreadsheets and documents and allow multiple team members to review and edit them in real-time online at the same time.
Writing reports gets simpler since there is only one working version of the document. A “track changes” option is there (called “Suggesting”) and everyone can see the edits as they are being made. No more asking “who has the most current version?”  This type of collaborative editing is also great for Design Criteria Documents that are regularly being updated by different team members.
I have used both DropBox and Google Drive, but my preference is using Google Drive since it integrates well with G-Suite.

Foxit Reader:  

This is an alternative to Adobe Reader and can be used for reviewing PDF documents, whether text documents or drawings.
Foxit provides great editing and commenting tools like highlighting text, adding comments, drawing lines and boxes, adding comment balloons, cut & pasting images into the PDF file, and then saving the commented version.
For the most part I have stopped using Adobe Reader and have now switched over to Foxit due to commenting capability that it provides.

Google Hangouts:  

This is an online and mobile application for team conference calling.  It allows screen sharing, online group video conversations, sends out meeting reminders, and it will call participants at the require time.
While Hangouts has many of the same features as Skype, it integrates with Google Calendar and Gmail.   Most of the tech world uses Hangouts instead of Skype, but I’m not sure if the mining industry is ready to move away from Skype.
An honorable mention for video-conferencing goes to Zoom. Some tech developers have been switching to Zoom, they feel it has more capabilities than Hangouts and better video resolution. I have never used it however.

Other Software

Those are a few of the software tools that I have found useful and so now you’re probably wondering “what else is out there for me?” The website The Freelance Stack lists many of different tools that exist. Check them out and some of the others may be of value to you. :

Geology & Mining Software

One of the standard marketing approaches used by tech software is to provide a fully functional product for free and then charge money to access the enhanced features. The goal is to get future users familiarized and trained on the product.  They hope that they will get hooked on the product and decide to upgrade their plan for the full product suite.
I’m not sure whether any geology or mining software  is available for free in a fully functional format with optional upgrading. By functional, I don’t mean simply providing a “viewer” to view the work of others or a 30-day free trial period.  I mean actual software that provides some useful capability for free in order to get you hooked. Please let us know if this software marketing approach exists in the mining industry.

Conclusion

The bottom line is that there is a lot of interesting collaboration software out there.  Its readily available, much of it is free, and can make managing your remote project teams easier. Just because the software is used by the tech industry and millennials, don’t assume it won’t have a benefit to the mining industry.
The downside is the need to train and learn the new software, and the mining industry may not be so receptive to that.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

47. Online Collaboration and Management Tools (Part 1)

networking
Update:  This blog was originally published March 2016.   However like all things, the online world keeps evolving. So I have updated Part 1 and Part 2 of the blog (Dec 2018).  I added new software suggestions and removed some.
As part of a side business, I have been working alongside a team of software developers. It has been a good learning experience for me to see how the tech world does things compared to how the mining industry likes to work. We see a lot of private equity flowing into tech and less into mining, so they must be doing something right.
The tech start-up industry has developed its own set of jargon.  Common terms are agile management, lean start-ups, disruption, minimum viable products, pings, fail fast, and sprints.
Some of their work approaches do not make sense for the mining industry where one doesn’t have the luxury of using trial-and-error and customer feedback to help complete a project.
For software, the attitude is get it out the door fast and your customers will then tell you what fixes are needed. In mining you want to get it right the first time.  Having said that, some mining people will say they have seen 43-101 technical reports that follow the “wait for customer feedback” model.
Now where the tech industry can provide us with some guidance is in the implementation of collaboration tools. It is becoming more common for software developers to work remotely.  To collaborate they use the technology available or they develop new technology to meet their needs.  Mining teams are also working more and more from remote offices these days.

What are the collaboration software available

The following is a partial list (Part 1) of free software tools that I have used, mainly because I was forced to. With some hesitation at first, I have subsequently found the tools easy to use.  Many of them can definitely be applied in the mining industry with remote and diverse study teams.
There are a lot more tech tools out there but my list includes some that I have personally used. Most of these are free to begin with, and enhanced features are available at a minimal cost. However even the free versions are functional and can be used to build a comfort level in the team. Most of them provide both web based access and mobile access so even when you’re on the road you can still use them and contribute.

Trello

Trello: If you want to create a “to-do list” or task list for your team, this is the software to use. Imagine a bunch of  post-it notes that you can place under different categories, assign persons to each note, attached a file to the note if you wish, and then have back and forth discussions within each note.   Once a task is done, just drag the note to another category (e.g. “In Progress”, “Completed”). Anyone on the team can be invited to the Trello Board and can collaborate. See the image below for an example Trello screenshot.   This is a great tool for helping to manage tasks in a mining study.

 

Trello screenshot

Slack

Slack: If you want to maintain a running dialogue of group discussions that invited team members can follow and join in on, then Slack (a Canadian company) is for you. It can replace the long confusing back-and-forth emails that we commonly see.  If someone forgets to “reply all” the rest of the team is out of the loop. See the image below for an example Slack screenshot. It’s great for discussions among the team.  You can also have private one-on-one discussions or wide open team discussions.  You can attach files too and you can get pinged when something new is added. It provides permanent record of conversations and decisions.

Slack Screenshot

Mural

Mural:  Mural is a recent innovation to solve the issue that remote teams have of not sitting in the same room and writing ideas down on a whiteboard.   For that last while, there was no good white boarding software out there but I understand that Mural fills the gap.  i have not used it so cannot vouch for its simplicity, however it seems to be catching with the tech developers.  The screenshot below shows the type of inter-actions possble.  Each person has access to write on the whiteboard.
Basecamp: is similar program to Slack that incorporates features from both the above and some people swear by this tool. I have not personally used it so cannot vouch for it, but some say it is very good.

Conclusion

The bottom line is that there is a lot of good stuff out there, readily available, much of it free, and can facilitate collaboration among your teams. Just because its tech industry related, don’t assume it wouldn’t have an application in the mining world.  As millennials enter the mining workforce, these tools may gain a foothold.
To read about even more collaborative tools, take a look at Part 2 of this blog.  Comments on any of the discussions or software are appreciated.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

42. Global Tax Regimes – How Do They Compare?

mining economics
Update: This blog was originally written in Feb 2016, but has been updated in Dec 2018.
As a reminder for all QP’s doing economic analysis for PEA’s, don’t forget that one needs to present the economic results on an after-tax basis.
Every once in a while I still see PEA technical reports issued with only pre-tax financials.  That report is likely to get red- flagged by the securities regulators.  The company will need to amend their press release and technical report  to provide the after tax results.    No harm done other than some red faces.

Taxes can be complicated

When doing a tax calculation in your model, where can you find international tax information?  PWC has a very useful tax-related website.  The weblink below was sent to me by one of my industry colleagues and I thought it would be good to share it.
The PWC micro-site provides a host of tax and royalty information for selected countries.  The page is located at http://www.pwc.com/gx/en/industries/energy-utilities-mining/mining/tax.html
On the site they have a searchable database for tax information for specific countries.
The PWC tax and financial information includes topics such as:
  • Corporate tax rates
  • Excess profits taxes
  • Mineral taxes for different commodities
  • Mineral royalties
  • Rates of permissible amortization
  • VAT and other regulated payments
  • Export taxes
  • Withholding taxes
  • Fiscal stability agreements
  • Social contribution requirements
PWC has a great web site and hopefully they will keep the information up to date since tax changes happen constantly.   It would be nice to see them add more countries to their 23 country database but it’s already good.  Check it out.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

39. Measured vs. Indicated Resources – Do We Treat Them the Same?

measured and indicated
One of the first things we normally look at when examining a resource estimate is how much of the resource is classified as Measured or Indicated (“M+I”) compared to the Inferred tonnage.  It is important to understand the uncertainty in the estimate and how much the Inferred proportion contributes.   Having said that, I think we tend to focus less on the split between the Measured and Indicated tonnages.

Inferred resources have a role

We are all aware of the regulatory limitations imposed by Inferred resources in mining studies.  They are speculative in nature and hence cannot be used in the economic models for pre-feasibility and feasibility studies. However Inferred resource can be used for production planing in a Preliminary Economic Assessment (“PEA”).
Inferred resources are so speculative that one cannot legally add them to the Measure and Indicated tonnages in a resource statement (although that is what everyone does).   I don’t really understand the concern with a mineral resource statement if it includes a row that adds M+I tonnage with Inferred tonnes, as long as everything is transparent.
When a PEA mining schedule is developed, the three resource classifications can be combined into a single tonnage value.  However in the resource statement the M+I+I cannot be totaled.  A bit contradictory.

Are Measured resources important?

It appears to me that companies are more interested in what resource tonnage meets the M+I threshold but are not as concerned about the tonnage split between Measured and Indicated.  It seems that M+I are largely being viewed the same.  Since both Measured and Indicated resources can be used in a feasibility economic analysis, does it matter if the tonnage is 100% Measured (Proven) or 100% Indicated (Probable)?
The NI 43-101 and CIM guidelines provide definitions for Measured and Indicated resources but do not specify any different treatment like they do for the Inferred resources.
CIM Resources to Mineral Reserves

Relationship between Mineral Reserves and Mineral Resources (CIM Definition Standards).

Payback Period and Measured Resource

In my past experience with feasibility studies, some people applied a  rule-of-thumb that the majority of the tonnage mined during the payback period must consist of Measure resource (i.e. Proven reserve).
The goal was to reduce project risk by ensuring the production tonnage providing the capital recovery is based on the resource with the highest certainty.
Generally I do not see this requirement used often, although I am not aware of what everyone is doing in every study.   I realize there is a cost, and possibly a significant cost, to convert Indicated resource to Measured so there may be some hesitation in this approach. Hence it seems to be simpler for everyone to view the Measured and Indicated tonnages the same way.

Conclusion

NI 43-101 specifies how the Inferred resource can and cannot be utilized.  Is it a matter of time before the regulators start specifying how Measured and Indicated resources must be used?  There is some potential merit to this idea, however adding more regulation (and cost) to an already burdened industry would not be helpful.
Perhaps in the interest of transparency, feasibility studies should add two new rows to the bottom of the production schedule. These rows would show how the annual processing tonnages are split between Proven and Probable reserves. This enables one to can get a sense of the resource risk in the early years of the project.  Given the mining software available today, it isn’t hard to provide this additional detail.

Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.

Share

34. On-Line Technical Report Library

mining studies
Update: This blog was originally written in August 2015, but has been updated in June 2019.
A while ago (in 2015) on LinkedIn I noticed a discussion from a member of an Australian/New Zealand consulting group about developing an on-line community for undertaking free peer reviews of new resource estimates and technical reports.   The objective was to help the mining industry improve on their standards, consistency, and quality of resource estimates and the supporting technical reports.

Original RSC website

OPAXE (then called RSC) created a library of technical reports that can be accessed via a searchable map on their web site at this link.  The map functionality is quite unique and interesting.  Check it out – there are many global projects already listed on the map.
Originally they also proposed a peer review concept. The goal was to develop a team of pre-approved volunteer mineral consultants that would review the various technical reports for accuracy and compliance. The hope is that such on-going peer reviews would help improve the quality of technical work.
It appears that the peer review aspect has been discontinued.  However currently, when viewing an individual project there is an input box that asks “I would like to anonymously report a compliance or data error issue with this report.
The website also allows you to search for reports based on date, commodity, stock exchange, type of study, as well as other criteria.

Conclusion

If you are interested in the technical aspects of different mining projects in different jurisdictions, check out the OPAXE website.  You can also still retrieve documents from the SEDAR site if you know the company you are looking for.  Alternatively the company website itself usually includes links to all their technical reports.

Update

Digbee website screenshot

In June 2019, a new website has come to my attention.  It is called Digbee, at thedigbee.com.   Its a new data and research platform where they match experts with mining feasibility studies to create objective reviews.  The site is very similar to the OPAXE one.
In May 2019 Digbee launched with a free database of over 3,000 economic studies, displayed on an interactive map.  In addition, they intend to offer a paid on-demand and independent analysis of published feasibility studies.  Mining companies can contact Digbee to get their project added.
Share

26. Cashflow Sensitivity Analyses – Be Careful

cashflow sensitivity
One of the requirements of NI 43-101 for Item 22 Economic Analysis is “sensitivity or other analysis using variants in commodity price, grade, capital and operating costs, or other significant parameters, as appropriate, and discuss the impact of the results.”
The result of this 43-101 requirement is typically the graph seen below, which is easily generated from a cashflow model.  Simply change a few numbers and then you get the new economics.  The standard conclusions derived from this chart are that metal price has the greatest impact on project economics followed by the operating cost.   Those are probably accurate conclusions, but is the chart itself telling the true story?
 DCF Sensitivity GraphI have created the same chart in several economic studies so I understand the limitations with it.   The main assumption is that sensitivity economics are based on the exact same mineral reserve and production schedule.
That assumption may be applicable when applying a variable capital cost but is not applicable when applying varying metal prices and operating costs.   Does anyone really think that in the example show, the NPV is $120M with a 20% decrease in metal price or 20% increase in operating cost?
Potentially a project could be uneconomic with such a significant decrease in metal price but that is not shown by the sensitivity analysis.  Reducing the metal price would result in a change to the cutoff grade.  This changes the waste-to-ore ratio within the same pit.  So assuming the same the  mineral reserve is not correct in this scenario.
These changes in economic parameters would impact the original pit optimization used to define the pit upon which everything is based.  A smaller pit size results in a smaller ore tonnage, which may justify a smaller fleet and smaller processing plant, which would have higher operating costs and lower capital costs.
A smaller mineral reserve would produce a different production schedule and shorter mine life.  It can  get quite complex to do it properly.
Hence the shortcut is to simply change inputs to the cashflow model and generate outputs that are questionable but meet the 43-101 requirements.
Share

16. Request For Proposal (“RFP”) – Always Prepare One

Mining request for proposal
When it comes to time to gather costs for any type of engineering study, whether small or large, whether sole sourced or competitively bid, it is always a good idea to prepare a Request For Proposal (“RFP”) document.
An RFP is better than a verbal phone call to a consultant describing what you want.  Its better than a cursory email outlining what you want. In many cases the RFP doesn’t need to be a complex document; however RFP’s are appreciated by everyone involved.

The RFP doesn’t need to be complicated

executive meetingFrom an owner’s perspective, preparing an RFP gives the opportunity to collect the thoughts on the scope of study needed, on the deliverables required, and on the timing.   The RFP will outline this for the consultants and simultaneously help the owner’s team to get on the same page themselves.  The RFP is the opportunity for the owner to tell the consultants exactly what they are looking for in the study and specifically what they want to see in the proposal.
From a consultant’s perspective, receiving an RFP is preferred since having a detailed scope of work laid out means they don’t need to guess the scope when preparing their cost estimate.  It will be clear to the consultant what work is “in scope” and if ultimately extra services are required then “out-of-scope” work can be defended.   An RFP also gives the consultant some reassurance that the owner has put consideration into exactly what they want them to do.

What to include in the RFP

The RFP that is sent to bidding consultants should contain (at a minimum) the items listed below. A sole sourced study can have a scaled back RFP but some of these key items should be maintained.   Much of this RFP information can be a single template document that will be modified if different scopes of work will be sent to different consultants (e.g. tailings design, pit geotechnical, groundwater, feasibility study, etc.).
  • Project Introduction (a high level overview of the project and the Owner).
  • Table of Responsibilities for the Study (if other consultants are being involved in different areas).
  • Scope of Work (for this Proposal), and highlight any specific exclusions from the scope.
  • Additional Requirements (update meetings, monthly reports, timesheets, documentation, etc.)
  • Schedule (the timing for the proposal, job award date, study kickoff, and completion date).
  • Instructions to the Bidder (e.g. what information should be provided in each proposal and in what format).
  • Other (the legal rights of the Owner, confidentiality statement, how proposals will be evaluated, etc.).

Specifying format makes it easier to compare proposals

If a company is competitively bidding the study, it can be easier to compare multiple proposals if certain parts are presented in the exact same format.  Usually different consulting firms have their own proposal format, which is fine, however certain sections of the proposal should be made easily comparable.
The RFP can request that each proposal should contain (at a minimum):
  • Confirmation of the scope of work based on the RFP, which may be more detailed than the RFP itself.
  • List of exclusions.
  • List of final deliverables.
  • Proposed Study Manager, resume and relevant study management experience.
  • Proposed team members, organizational structure by areas of responsibility, and resumes.
  • Cost estimate on a not-to-exceed basis for each area, subdivided by team member, hours and unit rates ,and possibly in a specific table format.
  • A fee table for the various job classifications that would be applied to out-of-scope additional man hours.
  • All indirect costs, administrative costs, indicating mark-ups (if any).
  • Miscellaneous disbursements (i.e., airfares, hotel, vehicles) and indicate if there are mark-ups.
  • Detailed study schedule to completion.
  • Payment schedule.
  • Specify if there are any potential conflicts of interest with other projects.

Conclusion

The bottom line is that an owner should always take the time to prepare some type of RFP for any study they want to undertake.  The owner should also request a consultant proposal based on that RFP, even if it is being sole sourced to one consultant.
Depending on the size and nature of the study, one can use judgement on how detailed the RFP or consultant’s proposal must be, but one should always have the proper documentation in place beforehand.
Share

10. Google Earth – Keep it On Hand

Mining studies
In a previous article (3. Site Visit – What Is the Purpose?) I briefly discussed the requirements for a site visit to be completed by one or more Qualified Persons (“QP”) in a 43-101 compliant study.    Unfortunately the entire study team cannot participate in a site visit; however the next best thing may be Google Earth.

Lets fly around with Google Earth

Gather your team around their computers and fire up screen sharing software like Glance, GoToMeeting, Skype, or Cisco Webex.   Here are some of the things your group can do with Google Earth:
  • It can be used to fly-around the project site examining the topography.
  • It can be used to view regional features, regional facilities, land access routes, and existing infrastructure.
  • It  has the capability to measure distances, either in a straight line or along a zigzag path.
  • It provides the capability to view historical aerial photos (if they exist) to show how the project area might have changed over time.
  • It can import GPS tracks and survey waypoints.  If a member of the study team has visited the site with a GPS, they can illustrate their route and their observations.
My recommendation is to always have a Google Earth session with your engineering team to examine the project site and the regional infrastructure.
A group session like this ensures that everyone sees and hears the same thing. It’s like taking a helicopter tour of the site with your entire study team at once!   A “helicopter tour” would be a good agenda item at the very first kickoff meeting.
Another option is to check the aerial photos and Bird’s Eye views on the Bing Maps website (www.bing.com/maps).  Sometimes those images will be different than what you will find in Google Maps or Google Earth.
Share

9. Large Consulting Firms or Small Firms – Any Difference?

Mining feasibility pre-feasibility
I have come across some junior mining companies that have based the selection of their engineering consultant on the assumption that they needed a “big name” firm on the cover page to give credibility to the study.   This is an interesting dilemma that many smaller mining companies run into and also a dilemma for the smaller engineering firms trying to win jobs.  Large consultants may ultimately be higher cost due to their overheads, however their name on the study may bring some intangible value.
Based on my experience I feel that larger consultants are best suited for managing large scope feasibility level studies.  This isn’t because they will necessarily provide a better technical product, but rather they tend to have the management and costing systems in place to undertake the larger studies.  The larger firms will be able to draw in more management resources; for example, project schedulers and document control personnel.  Ultimately one will pay for all of these people, which may help in getting to the endpoint of the final study but it will come at a cost.
For certain aspects of a feasibility study, one may actually get better technical services from smaller specialized engineering firms.  However the overall coordination of a large feasibility study can be an onerous task and the large firms may be well positioned to do this.
In my view, likely the best result will come from a combination of a large firm managing the feasibility study but undertaking only the technical work where they can be deemed to be experts in.  The large lead firm would be supported by smaller firms for the specialized aspects, as per a previous article “Multi-Company Engineering Studies Can Work Well..Or Not”.
For smaller studies, like scoping studies (i.e. PEA’s) which can be based on limited amounts of technical data, I personally don’t see the need for the large engineering firms.  The credibility of such early studies will largely be based on the amount of data used to support the design assumptions; for example how much metallurgical testing has been completed; how much geotechnical investigation been completed; how much inferred resource is being used in the mine plan (see “PEA’s – Not All PEA’s Are Created Equal”).  A large firm’s use of limited data may be no more defensible than a small firm’s use of the same data.
One of the purposes of an early stage study is to see if the project has economic merit and would therefore warrant further expenditures in the future.  An early stage study is generally not used to defend a production decision.  In addition, the objective of an early study is not necessarily to terminate the project outright unless it is obviously highly uneconomic.
I have seen cases where larger firms, in order to protect themselves from limited data, were only willing to use the most conservative design assumptions. This may not be helpful to a small mining company trying to decide what to do with a developing project.
My bottom line is that for early stage studies like a PEA, smaller engineering firms can do as good a job as larger firms.  However one must select the right firm, review some of their more recent 43-101 reports to gauge their quality of work, and don’t hesitate to check their client references.   For the more advanced feasibility level studies, if the small firm indicate they can do the entire study too, one should be wary. Perhaps they can do parts of the feasibility study by sub-contracting to a larger firm but managing such large study may be beyond their internal capabilities.
Whether considering a small or large engineering firm, one needs to be aware of their strengths and weaknesses as regards to the specific study.
Share

8. PEA’s – Is it Worth Agonizing Over Details

Mining PEA
As stated in a previous article (“PEA’s – Not All PEA’s Are Created Equal“) different PEA’s will consist of different levels of detail.  This is driven by the amount of technical data available and used in the study.    The same issue applies to a single PEA whereby different chapters of the same study can be based on different degrees of data quality.
I have seen PEA’s where some of the chapters were fairly high level based on limited data, while other parts of the same study went into great depth and detail. This may not be necessary nor wise.

Think about the level of detail justifiable

If the resource is largely inferred ore, then the mine production plan will have an inherent degree of uncertainty in  it.  So there is not a lot of justification for other engineers (for example) to prepare detailed tailings designs  associated with that mine plan.
Similarly there is little value in developing a very detailed operating cost model or cashflow model for a study that has many underlying key uncertainties.  Such technical exercises may be a waste of time and money, adding to the study duration, increasing engineering costs, and giving the unintended impression that the study is more accurate than it really is.
Different levels of detail in the same study can crop up when diverse teams are each working independently on their own aspect of the study.   Some teams may feel they are working with highly accurate data (e.g. production tonnage) when in reality the data they were provided is somewhat speculative.
The bottom line is that it is important for the Study Manager and project Owner to ensure the entire technical team is on the same page and understands the type of information they are working with.   The technical detail in the final study should be consistent throughout.
Experienced reviewers will recognize the key data gaps in the study and hence view the entire study in that light regardless of how detailed the other sections of the report appear to be.
Share

7. Multi-Company Engineering Studies Can Work Well…or Not

Mining studies
Most, if not all, advanced studies these days rely on engineering teams comprised of participants from different consulting firms or from different regional offices of the same company.   This approach gives the opportunity to use  experts for different parts of a study.
My recollection is that years ago larger consulting firms would offer to do an entire study in-house.  That now seems to have changed and the multi-company approach seems to be the norm.
This is partly being driven by the clients who wish to work with  consultants they are familiar with and have existing relationships. It
In some instances, larger firms may still make the argument they can take on all of the project scope themselves.  However reflect on such offers, the danger being a less qualified team seconded from offices that are not busy.  Possibly you won’t get the best team; you  get who is available.
In many joint company studies, often few of the team members will have ever worked together before.  It may be a team building exercise right from the start.
I have had both good and bad experiences with these types of engineering teams.  Some of them work very well while others floundered.  Even when working with different offices of the same firm, things may not go as planned.  Some of those in-house teams may not have previously worked together.

The Study Manager is Key

To have a successful study team, in my experience the two key factors are;
  1. The competency of the Study Manager;
  2. The amount (and style) of team communication.
The Study Manager is vital to keeping everyone working on the same page and making sure timelines are met. (I have another blog discussing the Study Manager role).  A single team member delaying their deliverables will delay others on the team.
Some consulting firms have multiple client projects underway at the same time.  Unexpected delays in one study may cause them to shift personnel onto other clients.  Unfortunately sometimes it is difficult to bring the team back together on your project at a moment’s notice.
The Study Manager must ensure that everyone understands what their deliverables are.   Generally this is done using a “Responsibility Matrix”, but these can sometimes be too general.
Where cost estimation is involved, the Responsibility Matrix should be supported by a Work Breakdown Structure (“WBS”) assigning the costing responsibilities.  Given that the contentious parts of many studies are the capital and operating cost estimates, I personally view the WBS equally as important as the Responsibility Matrix.  (I have another blog on the subject of WBS ).
Team communication is vital and there are different ways to do it.   Weekly or bi-weekly conference calls work well but these need to be carefully managed.  With a large team on a conference call, there is a fine line between getting too much technical detail versus not enough detail.
On some studies I have seen a weekly call restricted to one-hour long and then everyone flees until next week’s call.  At the end of these conference calls, one might have an uneasy feeling of it being incomplete. Perhaps people were not clear on something but hesitated to ask become the one-hour time is up.   In such cases it is important for the relevant parties to continue on or have a separate call.

Make it apparent to everyone that they should speak up if something is not clear to them, regardless of the time remaining.

The bottom line is that multi-company teams will work fine as long as the study manager is capable.  Its not a simple task, and not everyone can do it well.  However everyone (client and the other team members) appreciate working under a really good study manager.
Share

5. PEA’s – Not All PEA’s Are Created Equal

Mining Preliminary Assessments
A Preliminary Economic Assessment (“PEA”) is defined in NI 43-101 as “…a study, other than a pre-feasibility or feasibility study, that includes an economic analysis of the potential viability of mineral resources”.  This is a fairly broad definition that provides for plenty of flexibility.  While there are generally accepted industry norms for a pre-feasibility or feasibility study, the mining PEA can have a broad scope.
Some PEA’s might be based on a large database of test work and site information while others may rely on very preliminary data and require design projections based on that data.
Some PEA’s may have production schedules consisting largely on Inferred resources while other schedules may be based on higher proportion of Indicated resource.
Some PEA’s are able to incorporate information from advanced socio-environmental work while other PEA’s may not have access to advanced information.
Therefore one should not view all PEA’s are being created equal.
The PEA is normally developed at a fairly early stage in the project life.  The initial PEA may then be superseded with a series of updated PEA’s as more data is acquired.  Typically one would expect to see changes in project size or scope in these updates and hopefully improved economics.  Shareholders appreciate being updated on positive growth trends.

Sequential PEA’s

The sequential PEA approach is a convenient way to continue advancement of the project without making the step to a Pre-Feasibility study or bigger step to a Feasibility study.  Maybe the project is still growing in size and a feasibility study at this stage would not be presenting the true potential, hence the updated PEA.
On the downside of the sequential PEA approach is that investors may get tired of hearing about PEA after PEA.  They may want to see a bigger advance towards a production decision.  They ask “How long can they keep studying this project?”.

There is no right or wrong to what constitutes a PEA.

The securities commissions consider that the cautionary language an important component of the PEA Technical Report and may red-flag it if it’s not in all the right places.   However this cautionary language is generally focused on the resource.
For example the typical “The reader is cautioned that Inferred Resources are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as Mineral Reserves, and there is no certainty that value from such Resources will be realized either in whole or in part.”   In that cautionary statement there is no mention of all the other speculative assumptions that may have been used in the study.
For example, the Inferred resource may not be that significant however the amount of metallurgical test work might be a more significant uncertainty.  The previous cautionary language doesn’t address this issue.  Therefore it is important to consider the chapters in the Report pertaining to risks and recommendations for a more complete picture of the entire report.

Conclusion

The bottom line is that when reviewing a PEA report, be aware of all the uncertainties and assumptions that have been incorporated into the study.   The report may be well founded or built on a shaky foundation.  No two PEA’s are the same and this must be clearly understood by the reviewer.
Perhaps one should develop a PEA “checklist” that can be used to rate the amount and quality of data used for the different parts of the study to help understand where gaps may exist.
For more about preparing a mining PEA, read the blog “PEA’s – Is it Worth Agonizing Over Details“.
Share