Articles tagged with: Mine Engineering

Is Insitu Leaching the “Green Mining” Future

It is no surprise to anyone that permitting new open pit mines in today’s environment is getting more difficult and even impossible in some areas.   Underground mines also have their challenges, permitting as well as requiring relatively high grades to be economic.
So where might our future metal supplies come from?  What are the options?

Insitu leaching may be the answer

I recently came across an insitu leaching website, called BIOMore.  This was an initiative sponsored by the EU that looked at insitu leaching technology for metal recovery.    Environmental issues associated with mining in Europe, particularly open pit mining, raised concerns about how ore bodies in the EU might be developed in the future.
Insitu leaching technology was viewed as playing an important role.  This is due to its minimal surface disturbance, ability to operate at great depth, and its potential in urban and developed locations.  Sounds like a nice solution to have on hand.
The EU-funded BIOMOre research project was completed in 2018.  It was designed to develop a new technological framework for the insitu recovering of metals from deep deposits.  The process would rely on controlled stimulation of pre-existing fractures in combination with insitu bio-leaching.  The study mainly focused on the application of existing technologies.

Fracing will be an issue

Insitu leaching essentially relies on exposing mineralized surfaces to leach solutions.  This may require hydro-fracturing (fracing) to enhance insitu bio-leaching using bacteria and acid.   Fracing is currently banned in some European countries so this is going to be a potential issue.  From a leaching perspective, the trade-off would be between no fracing, reduced cost & lower metal recovery against higher cost & higher metal recovery with fracing.
If insitu leaching technology development is successful, it could help exploit European base metals from porphyry deposits (Cu, Au, Mo, Cu, REE, PGE, Re, Pb, Cu, Pt, Au) and other gold and uranium deposits.   Insitu leaching would avoid building a mine, mine infrastructure, and it generates almost no tailings nor waste dumps.  Leaching is expected to be cheaper than traditional mining and more acceptable to the public. Insitu leaching is being touted as “Green Mining”

What did they conclude

This study deliverables included comprehensive documentation, an economic evaluation, and risk analysis of a potential insitu bio-leaching operation.  The basis was a theoretical deposit, looking at different well field set-ups.
The study concluded that accessing potential deposits at depths of around 1000 m is economically feasible only if curved wells are used.  The most relevant operational parameters are sufficient permeability in the ore zone and an adequate contact surface between the ore and leaching solution.   The depth of the deposit is indirectly relevant, but more importantly the well installation cost per volume of deposit is critical.  Hence curved wells are optimal.
One interesting suggestion was combining an insitu leach operation with geothermal energy recovery.  This might result in additional project revenue stream with only a marginal cost increase.
It was suggested that insitu leach operations might be attractive in former mining regions where high grade deposits have been mined out yet nearby low grade deposits are well defined. Social license for insitu leaching may also be more accepting in these areas.
If you are interested in learning more about insitu leaching technology and the chemistry aspect, the BIOMore study deliverables are available for downloading at this site.
In the past, mining engineers like myself were told to learn the basics of crushing, grinding, and flotation to become more well rounded.  I may suggest that future mining engineers may need to learn the basics of directional drilling, hydro-fracing, and chemistry.  Sounds like petroleum engineering.
Update: The University of Western Australia is also looking at electric fields to extract metals from hard rock ore, the sample principle as electro-plating.  Check out more information at this link “No more digging – a new environmentally friendly way of mining“.

Some aspects are still uncertain

In practical terms, some things are still not clear to me. For example are how much effort and diligence must go into properly characterizing the permeability of a rock mass.  As well, how complex a task is it to metallurgically characterize the deposit spatially with regards to it being amenable to insitu leaching.  Not all ore types will behave the same and be amenable to leaching.
I am also curious about the ability to finance such projects, given the caution associated with any novel technology.  Many financiers prefer projects that rely on proven and conventional operating methods.
Notwithstanding those concerns, likely insitu leaching technology will continue to advance and show even more promise, and eventually gain greater acceptance.
While some innovators are looking at new ways to drill, blast, and move rock, the real innovators are looking at ways to recover metals without moving any rock at all.
For those interested, Excelsior Mining is looking to open a copper oxide insitu leaching operation in Arizona.  Here is video of how their technology will work.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.

Share

Blockchain vs Robotic Process Automation

I recently wrote a blog about how Artificial Intelligence (AI) is now being used by the exploration side of the mining industry. My curiosity was whether the application of AI is going to be real or is it just being used as a buzzword to help promote companies. You can read that blog at this link “AI vs The Geologists”.
With the topic of buzzwords in mind, I was curious about some of other technology advances we hear about. Coincidentally Canadian Mining Magazine (Winter 2019 issue) published two articles on upcoming technologies, the links are provided here; blockchain and robotic process automation. As with AI, I’m still curious about these two, mainly due to the limited number of applications thus far.

Blockchain for supply chain

With regards to blockchain, it seems to me the main benefits are being related to supply chains, whether for purchasing or selling activities. Some of the examples given are that one can verify where the cobalt in your phone was mined or where your engagement diamond is from. Oddly though, I don’t recall ever wanting to know where the metal in my phone is from.
Other example applications of blockchain are for inventory management, shipment number tracking, transport log tracking, and bill of lading management. The advantages are transaction speed, trust, and traceability.
Currently there are many ways shipping and receiving activities are being tracked. Hence I am a bit unclear as to where blockchain will provide a groundbreaking improvement. Can’t well designed cloud database achieve the same thing?
Blockchain reportedly has improved security in that copies of its tracking “ledgers” are simultaneously hosted on multiple servers and hence are hack-proof.
Is blockchain over-hyped?  Here’s an article that seems to think so “5 challenges to getting projects off the ground”.
Thus far in my career I have not yet had any direct experience with a real life application of blockchain. Therefore it is a bit difficult to say whether it is a great business innovation or a great business promotion. Perhaps some of you have had experience with actual blockchain applications in the mining industry. Please let me know and I will follow up. So far I am still on the fence.
On the other hand…

Robotic Process Automation

We have seen in manufacturing that robotics will eliminate repetitive type jobs. Will robotic process automation (rPA) be able to do the same by completing repetitive tasks for us?
The types of tasks being targeted for rPA are real time data analysis, daily- weekly-monthly reporting, tracking real time costs and progress schedules, or in other words, monitoring system wide process inputs and outputs.
Having access to real time data is important and it is a growing trend worldwide in all industries. In my view, mine site wide data integration is a key to the future of mining, especially when combined with AI, data mining, and data analysis. It is great to have the ability to instantly know exactly what is going on everywhere at a mine site. It is also great to know what went on in the previous hour, 24 hours, or 30 days.
Modern sensor technology is such that almost anything can be monitored now in real time. Will an action in one part of the operation trigger an impending impact in another part of the operation? For example can a large blast in the pit result in excess vibrations leading to tailings dam creep at the same time and is someone monitoring something this simultaneously? There are many action-reaction type events that occur in a mining operation, each with operational or cost impact. Only technology is able to instantly monitor all of these activities, assess their impacts, and provide quick decisions.
Collecting hoards of data from a site wide sensor network creates a dilemma in what to do with all the data collected. Smart cities are running into this issue. Who can sort through the data, decide what is important and what is noise, then summarize the data and report on it in real time? A human cannot deal with the amount of data being collected in such networks.
I have seen companies use fleet dispatch systems to collect gigabytes of data but then have difficulty in analyzing and making sense of it all. Sometimes the dispatch data is simply used to produce a month end production report. This is one example of where process automation may play a bigger role.
I don’t see repetitive process automation eliminating many jobs. Rather it may even increase the jobs needed to maintain and operate the virtual networks. Employment aside, I see the benefit of rPA is having a better understanding of the functioning organism called a mining operating. An operation is essentially an organism with lots of moving parts constantly making decisions requiring emotional intelligence.

Conclusion

Regarding the two technologies discussed in this blog, I personally feel robotic process automation will have far greater impact on mining industry future and its profitability.
For many years we have already seen some application of this technology (i.e. just in the mine or just in the plant). With improving sensors, increased computing power, AI, and cloud data storage, I feel that site wide integrated robotic process automation will lead the way.
However the clouds on the horizon may be the high cost of implementation, the risk of hacking (read https://kuchling.com/66-cyber-security-coming-to-a-mine-near-you), and the fact that different vendors may use different data protocols making system wide integration extremely difficult.
In my view blockchain has not yet made the case for itself. No doubt I need more education on blockchain but that will hopefully come naturally as some real life applications are introduced into our daily activities.  Read the Canadian Mining Magazine articles linked to above and see what you think the future holds for mining.
For those interested in remote tailings dam monitoring,here is an interesting CIM article “The internet of tailings“.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Ore Dilution – An Underground Perspective

A few months ago I wrote a blog about different approaches that mining engineers are using to predict dilution in an open pit setting. You can read the blog at this link. Since that time I have been in touch with the author of a technical paper on dilution specifically related to underground operations. Given that my previous blog was from an open pit perspective, an underground discussion might be of interest.
The underground paper is titled “Mining Dilution and Mineral Losses – An Underground Operator’s Perspective” by Paul Tim Whillans. You can download the paper at this link.

Here is the abstract

For the underground operator, dilution is often synonymous with over-break, which mining operations struggle to control. However, there are many additional factors impacting dilution which may surpass the importance of overbreak, and these also need to be considered when assessing a project. Among these, ore contour variability is an important component of both dilution and mineral losses which is often overlooked.  Mineral losses are often considered to be less important because it is considered that they will only have a small impact on net present value. This is not necessarily the case and in fact mineral losses may be much higher than indicated in mining studies due to aggregate factors and may have an important impact on shorter term economics.

My key takeaways

I am not going into detail on Paul’s paper, however some of my key takeaways are as follows. Download the paper to read the rationale behind these ideas.
  • Over-break is a component of dilution but may not be the major cause of it. Other aspects are in play.
  • While dilution may be calculated on a volumetric basis, the application of correct ore and waste densities is important. This applies less to gold deposits than base metal deposits, where ore and waste density differences can be greater.
  • Benchmarking dilution at your mine site with published data may not be useful. Nobody likes to report excessively high dilution for various reasons, hence the published dilution numbers may not be entirely truthful.
  • Ore loss factors are important but can be difficult to estimate. In open pit mining, ore losses are not typically given much consideration. However in underground mining they can have a great impact on the project life and economics.
  • Mining method sketches can play a key role in understanding underground dilution and ore losses, even in today’s software driven mining world.
  • Its possible that many mine operators are using cut-off grades that are too low in some situations.
  • High grading, an unacceptable practice in the past, is now viewed differently due to its positive impact on NPV. (Its seems Mark Bristow at Barrick may be putting a stop to this approach).
  • Inferred resources used in a PEA can often decrease significantly when upgraded to the measured and indicated classifications. If there is a likelihood of this happening, it should be factored into the PEA production tonnage.
  • CIM Best Practice Guidelines do not require underground ore exposure for feasibility studies. However exposing the ore faces can have a significant impact on one’s understanding of the variability of the ore contacts and the properties of minor faults.

Conclusion

The bottom line is that not everyone will necessarily agree with all the conclusions of Paul’s paper on underground dilution. However it does raise many issues for technical consideration on your project.
All of us in the industry want to avoid some of the well publicized disappointments seen on recent underground projects. Several have experienced difficulty in delivering the ore tonnes and grades that were predicted in the feasibility studies. No doubt it can be an anxious time for management when commissioning a new underground mine.
Note: previously I had shared another one of Paul’s technical papers in a blog called “Underground Feasibility Forecasts vs Actuals”. It also provides some interesting insights about underground mining projects.
If you need more information, Paul Whillans website is at http://www.whillansminestudies.com/.
The entire blog post library can be found at this LINK with topics ranging from geotechnical, financial modelling, and junior mining investing.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  
Share

Mining Dilution Prediction – Its Not That Simple

mining reserve estimation
Over my years of working on and reviewing mining studies, ore dilution often seems to be one of the much discussed issues.  It is deemed either too low or too high, too optimistic or too pessimistic.  Project economics can see significant impacts depending on what dilution factor is applied.  They are numerous instances where mines have been put into production, and excess dilution has subsequently led to their downfall.  Hence we need to take the time to think about what dilution is being applied and the basis for it.

Everyone has a preferred dilution method.

I have seen several different approaches for modelling and applying dilution.   It seems that engineers and geologists have their own personal favorites and tend to stick with them.   Here are some common dilution approaches that I have seen (and used myself).
1. Pick a Number:
This approach is quite simple.  Just pick a number that sounds appropriate for the orebody and the mining method.  There might not be any solid technical basis for the dilution value, but as long as it seems reasonable, it might go unchallenged.  Possibly its a dilution value commonly seen in numerous other studies.
2. SMU Compositing:
This approach takes each percent block (e.g.  a block is 20% waste and 80% ore) and mathematically composites it into a single Selective Mining Unit (“SMU”) block with an overall weighted average grade.  The SMU compositing approach will dilute the ore in the block with the contained waste.  Ultimately that might convert some highly diluted ore blocks to waste once a cutoff grade is applied.   Some engineers may apply an additional dilution percentage beyond the SMU compositing, while others will consider the blocks fully diluted at this step.
3. Diluting Envelope:
This approach assumes that a waste envelope surrounds the ore zone.  One estimates the volume of this envelope on different benches, assuming that it is mined with the ore.  The width of the waste envelope may be linked with the blast hole spacing used to define the ore and waste contacts for mining.  The diluting grade within the waste envelope can be estimated or one may simply assume a more conservative zero-diluting grade.   In this approach, the average dilution factor can be applied to the final production schedule to arrive at the diluted tonnages and grades sent to the process plant.
4. Diluted Block Model:
This dilution approach uses complex logic to look at individual blocks in the block model, determine how many waste contact sides each block has, and then mathematically applies dilution based on the number of contacts.  A block with waste on three sides would be more heavily diluted than a block with waste only on one side.   Usually this approach relies on a direct swap of ore with waste.  If a block gains 100 m3 of waste, it must then lose 100 m3 of ore to maintain the volume balance.   The production schedule derived from a “diluted” block model usually requires no subsequent dilution factor.
5. Using UG Stope Modelling
I have also heard about, but not yet used, a method of applying open pit dilution by adapting an underground stope
modelling tool.  By considering an SMU as a stope, automatic stope shape creators such as Datamine’s
Mineable Shape Optimiser (MSO) can be used to create wireframes for each mining unit over the entire
deposit. Using these wireframes, the model can be sub-blocked and assigned as either ‘ore’ (inside the
wireframe) or ‘waste’ (outside the wireframe) prior to optimization.   It is not entirely clear to me if this approach creates a diluted block model or generates a dilution factor to be applied afterwards.

 

When is the Cutoff Grade Applied?

Depending on which dilution approach is used, the cutoff grade will be applied either before or after dilution.   When the dilution approach requires adding dilution to the final production schedule, then the cutoff grade will have been applied to the undiluted material (#1 and #2).
When dilution is incorporated into the block model itself (#3 and #4), then the cutoff grade is likely applied to the diluted blocks.
The timing of when the cutoff grade is applied to the ore blocks will have an impact on the ore tonnes and had grade being reported.

Does one apply dilution in pit optimization?

Another occasion when dilution may be used is during pit optimization.  In the software, there are normally input fields for both a dilution factor and an ore loss factor.   Some engineers will apply dilution at this step while others will leave the factors at zero.  There are valid reasons for either approach.
My preference is use a zero dilution factor for optimization since the nature of the ore zones will be different at different revenue factors and hence dilution would be unique to each.   It would be good to verify the impact that the dilution factor has on your own pit optimization by running with a factor to see the result.

Conclusion

My personal experience is that, from a third party review perspective, reviewers tend to focus on the value of the  dilution percentage used and whether it seems reasonable.   The actual dilution approach tends to get less focus.
Regardless of which approach is being used, ensure that you can ultimately determine and quantify the percent dilution being applied.  This can be a bit more difficult with the mathematical block diluting approaches.
Readers may yet have different dilution methods in their toolbox and I it would be interesting to share them.
There is another blog post that discussed dilution from an underground mining perspective.  This discussion was written by another engineer who permitted me to share their paper.    You can read that at “Ore Dilution – An Underground Perspective“.
The entire blog post library can be found at this LINK with topics ranging from geotechnical, financial modelling, and junior mining investing.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  
Share

Does the Mining Industry Employ Interns?

employing interns
Over the couple of years I have been working on a side project in the tech industry.   One of the things that struck me was the hiring of interns, both paid and unpaid.
I’m now aware that interns are being hired in other industries such as legal, politics, journalism, and marketing.  However I have never come across the use of interns within the mining industry.
Intern

Why hire interns?

I was recently talking to a marketing consultant about tips on tech marketing and one of the suggestions she made was to hire an unpaid intern.  They would do much of the legwork of finding sales contacts and establishing contact with them.
My first question was why would anyone work for free?  There are  three main reasons:
  1. For school credit; as part of a course credit in college or university where an internship is part of the program requirement.
  2. For experience; it is difficult to get a real job without experience and so the internship teaches, builds  experience, and establishes a portfolio of work.
  3. Networking; building up industry connections can possibly lead to permanent work down the road.

Its the right thing to do

At first I was taken aback at the thought of asking someone to work for my company for free.  Are we that cheap?
Thinking about it further, if you are paying someone a salary the expectation is that they should be somewhat skilled at their job.  I have come to realize that the internship may actually be a win-win for both parties.

Its a win-win

The company gets a chance to learn about potential employees and also gets productive service from them.
The intern gains employment experience and learns about the realities of the business world.  Students have already paid the schools to teach them.  Now businesses can help teach them more, but at no cost.   It’s a win-win for both.
So how did our unpaid intern search go?  We posted a free ad on indeed.ca.  Within 72 hours we received over ten replies, of which only 2-3 came close to meeting the actual qualifications.  Some of the applicants had no relevant experience at all.
Possibly in today’s job market people are willing to work for free on the hope that they can get some experience, which will hopefully lead to a permanent job in the future.

Conclusion

The question is whether the mining industry can make use of interns in the areas of geology, engineering, marketing, presentation graphics, websites, etc?
There may be many students or recent grads looking for an opportunity and are willing to do whatever it takes to  advance their careers.
Even if your operating budget can’t afford the cost of hiring another person, you may still have a chance to help out someone new in the industry.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Underground Feasibility Forecasts vs Actuals

underground costing
I recently attended a CIM Management and Economics Society presentation here in Toronto discussing the differences between actual underground production versus the forecast used in the feasibility study. The presenter was Paul Tim Whillans from Vancouver Canada.
His topic is interesting and relevant to today’s mining industry.  Paul raised many thoughtful points supported by data. He gave me permission to share his information.
The abstract for his paper is inerted below.  The paper can be downloaded at this LINK and here are the presentation slides.

ABSTRACT

An underground mining study that is done in accordance with NI43-101, JORC or similar reporting code is generally assumed by the public to be representative, independent and impartial. However, it has been well documented by academics and professionals in our industry that there is a sharp difference between the forecasts presented in these underground studies and the actual costs when a mine is put into production.
For underground mines, the risks associated with obtaining representative information are much greater than for surface mining and the cost of accessing underground ore is also proportionally much greater. There is a pressing need to align expectations, by improving the accuracy of projections. This will result in reduced risk to mining companies and investors and provide more reliable information to government agencies, the public, and more importantly, the communities in which the proposed mine will operate.
The objective of this article and an article currently being written titled “Mining Dilution and Mineral Losses” is to:
– Discuss the dynamics of intention that lead to over-optimism;
– Provide simple tools to identify which studies are likely to be more closely aligned with reality;
– Identify some specific points where underground mining studies are generally weak;
– Discuss practices currently in use in our industry that lead to a composite or aggregate effect of over optimism;
– Describe the effects of overly optimistic studies;
– Outline specific changes that are necessary to overcome these challenges; and
– Stimulate discussion and awareness that will lead to better standards.”

Conclusion

I agree with many of the points raised by Paul in his study. The mining industry has some credibility issues based on recent performance and therefore understanding the causes and then repairing that credibility will be important for the future.
Credibility ultimately impacts on shareholder returns, government returns, local community benefits, and worker health and safety; so having a well designed mine will realize benefits for many parties.
If you need more information Paul’s website is at http://www.whillansminestudies.com/
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Ore Stockpiling – Why are we doing this again?

ore stockpile
In many of the past mining studies that I have worked, stockpiling strategies were discussed and usually implemented. However sometimes team members were surprised at the size of the stockpiles that were generated by the production plan. In some cases it was apparent that not all team members were clear on the purpose of  stockpiling or had preconceived ideas on the rationale behind it. To many stockpiling may seem like a good idea until they saw it in action.
Mine Stockpile
In this blog I won’t go into all the costs and environmental issues associated with stockpile operation.  The discussion focuses on the reasons for stockpiling and why stockpiles can get large in size or numerous in quantity.
In my experience there are four main reasons why ore stockpiling might be done. They are:
1. Campaigning: For metallurgical reasons if there are some ore types that can cause process difficulties if mixed  with other ores. The problematic ore might be stockpiled until sufficient inventory allows one to process that ore (i.e. campaign) through the mill. Such stockpiles will only grow as large as the operator allows them to grow. At any time the operator can process the material and deplete the stockpile. Be aware that mining operations might still be mining other ore types, then those ores may need to be stockpiled during the campaigning.  That means even more ore stockpiles at site.
2. Grade Optimization: This stockpiling approach is used in situations where the mine delivers more ore than is required by the plant, thereby allowing the best grades to be processed directly while lower grades are stockpiled for a future date. Possibly one or more grade stockpiles may be used, for example a low grade and a medium-low grade stockpile. Such stockpiles may not get processed for years, possibly until the mine is depleted or until the mined grades are lower than those in the stockpile. Such stockpiles can grow to enormous size if accumulated over many years.  Oxidation and processability may be a concern with long term stockpiles.
3. Surge Control: Surge piles may be used in cases where the mine may have a fluctuating ore delivery rate and on some days excess ore is produced while other days there is underproduction. The stockpile is simply used to make up the difference to the plant to provide a steady feed rate. These stockpiles are also available as short term emergency supply if for some reason the mine is shut down (e.g. extreme weather). In general such stockpiles may be relatively small in size since they are simply used for surge control.
4. Blending: Blending stockpiles may be used where a processing plant needs a certain quality of feed material with respect to head grade or contaminant ratios (silica, iron, etc.). Blending stockpiles enables the operator to ensure the plant feed quality to be within a consistent range. Such stockpiles may not be large individually; however there could be several of them depending on the nature of the orebody.
There may be other stockpiling strategies beyond the four listed above but those are the most common.

Test Stockpiling Strategies

Using today’s production scheduling software, one can test multiple stockpiling strategies by applying different cutoff grades or using multiple grade stockpiles. The scheduling software algorithms determine whether one should be adding to stockpile or reclaiming from it. The software will track grades in the stockpile and sometimes be able to model stockpile balances assuming reclaim by average grade, or first in-first out (FIFO), or last in-first out (LIFO).
ore stockpile
Stockpiling in most cases provides potential benefits to an operation and the project economics. Even if metallurgical blending or ore campaigning is not required, one should always test the project economics with a few grade stockpiling scenarios.
Unfortunately these are not simple to undertake when using a manual scheduling approach and so are a reason to move towards automated scheduling software.
Make sure everyone on the team understands the rationale for the stockpiling strategy and what the stockpiles might ultimately look like. They might be surprised.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.   Follow us on Twitter at @KJKLtd for updates and insights.
Share

Landslide Blog – If You Like Failures

slope failure blog
For those of you with a geotechnical background or have a general interest in learning more about rock slides and slope failures, there is an interesting website and blog for you to follow.
The website is hosted by the American Geophysical Union the world’s largest organization of Earth and space scientists. The blogs on their site are written by AGU staff along with contributions from collaborators and guest bloggers.

Landslide Blog screenshot

The independent bloggers have editorial freedom in the topics they choose to cover and their opinions are those of their authors and do not necessarily represent the views of the American Geophysical Union. This provides for some leeway on the discussions and the perspectives the writers wish to take.

Landslide Blog

One specific area they cover well in their Landslide Blog are the various occurrences of rock falls and landslides from any location around the globe. They will present commentary, images, and even videos of slope movements as they happen.
Often they will provide some technical opinion on what possibly caused the failure event to occur. The Landslide Blog has a semi-regular email newsletter that will keep you updated on new stories as they happen.
The following links are a few examples of the type of discussions they have on their website.
Here is a description of a small water dam failure in Greece.
Here is some video of the Samarco tailings runout in Brazil.
From time to time the Landslide Blog will examine mine slopes, tailings dams, and waste dump failures, however much of their information relates to natural earth or rock slopes along roads or in towns.
Some of their videos are quite fascinating, illustrating the forces behind some of earth’s natural erosion processes. Check it out for yourself.
The bottom line on all of this is that the less the mining industry is mentioned in the Landslide Blog, the better it is.
Note: You can sign up for the KJK mailing list to get notified when new blogs are posted.
Share

Remote Sensing of Ore Grades

mining automation
Update:  This blog was originally written in March 2016 and has been updated Jan 2019. 
The mining industry must continually find ways to improve and modernize. The most likely avenue for improvement will be using new technologies as they become available.
One of the players on the scene is a start-up company called “MineSense Technologies Ltd.”  They are a British Columbia company looking to improve ore extraction and recovery processes based on the sensing and sorting of low-grade ore. They hope their technology will improve mine economics by reducing the consumption of energy, water, and reagents.

Minesense

Having first written about this in 2016, its still not entirely clear to me how developed their technology is in 2019. Thus far they appear to be secretive with respect to their testing and performance results.  Certainly they are able to raise financing to keep them going.

Sensors are the answer

It appears MineSense is relying on a combination of ground-penetrating sensors with other technology in order to measure and report the grade of ore in real time.
Existing ore sorting technologies seem to focus on distinguishing mineralized material from gangue, but MineSense seems to be targeting using actual ore grades as the defining factor.
They hope to be able to eventually integrate their technology into equipment such as shovels, scooptrams, conveyors, feeders, and transfer chutes.
Their proprietary technology is based on High Frequency Electromagnetic Spectrometry and High Speed X-Ray Fluorescence sensors. Reportedly these can deliver better sensitivity and operate at high speeds. They plan to develop two distinct product lines; shovel-based systems; and conveyor belt-based systems.

ShovelSense

Their ShovelSense system would be a real-time mineral telemetry and decision system and used for measurement of ore quality while material is being scooped into the dipper, then reporting the ore quality and type to the grade control/ore routing system, and then enabling real-time online ore/waste dispatch decisions. Additional features may include tramp metal and missing tooth detection.  Sounds like a good idea, albeit some practical operating issues will need to be overcome.

BeltSense

Their belt conveyor systems (BeltSense) will use high-speed multi-channel sensing to characterize conveyed ore and waste in real time, allowing grades and tonnages to be reported and allowing ore to be diverted to correct destinations based on the sensor responses.
MineSense say that pilot units are operating at 20 tph and systems of up to 2000 tph are in the development stages.
Ore sorting has been around for a long time, with companies like Tomra, but possibly the MineSense technical approach will be different.

Conclusion

The bottom line is that we should all keep an eye on the continued development of this technology, especially as MineSense completes larger field trials.  Hopefully they will soon share results with industry since it will be critical for operators to see more actual case study data on their website.
I recognize that developing new technology will have its successes and failures. Setbacks should not be viewed as failure since innovation takes time. Hopefully after fine tuning their technology they can advance to the commercialization stage.
Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share

Higher Metal Prices – Should Miners Lower the Cut-Off Grade?

When metals prices are high, we are generally told that we should lower the cutoff grade. Our cutoff grade versus metal price formula tells us this is the correct thing do. Our grade-tonnage curve reaffirms this since we will now have more metal in the mineral reserve.

But is lowering the cutoff grade the right thing?

Books have been written on the subject of cutoff grades where readers can get all kinds of detailed logic and calculations using Greek symbols (F = δV* − dV*/dT). Here is one well known book by Ken Lane, available on Amazon HERE.
Recently we have seen a trend of higher cash costs at operating mines when commodity prices are high. Why is this?
It may be due to higher cost operating inputs due to increasing labour rates or supplies. It may also be partly due to the lowering of cutoff grades.  This lowers the head grade, which then requires more tonnes to be milled to produce the same quantity of metal.
A mining construction manager once said to me that he never understood us mining guys who lower the cutoff grade when gold prices increase. His concern was that since the plant throughput rate is fixed, when gold prices are high we suddenly decide to lower the head grade and produce fewer and higher cost ounces of gold.

Do the opposite

His point was that we should do the opposite.  When prices are high, we should produce more ounces of gold, not fewer. In essence, periods when supply is low (or demand is high) may not be the right time to further cut  supply by lowering head grades.
Now this is the point where the grade-tonnage curve comes into play.
Certainly one can lower the cutoff grade, lower the head grade and produce fewer ounces of gold.  The upside being an extension in the mine life.  A company can report more ounces in reserves and perhaps the overall image of the company looks better (if it is being valued on reserves).   To read more about the value of grade-tonnage curves, you check out this blog post “Grade-Tonnage Curves – Worthy of a Good Look.

What if metal prices drop back?

The problem is that there is no guarantee that metal prices will remain where they are and the new lower cutoff grade will remain where it is. If the metal prices drop back down, the cutoff grade will be increased and the mineral reserve will revert back to where it was. All that was really done was accept a year of lower metal production for no real long term benefit.
This trade-off  contrasts a short term vision (i.e. maximizing annual production) against a long term vision (i.e. extending mineral reserves).

Conclusion

The bottom line is that there is no simple answer on what to do with the cutoff grades.  Hence there is a need to write books about it.
Different companies have different corporate objectives and each mining project will be unique with regards to the impacts of cutoff grade changes on the orebody.
I would like to caution that one should be mindful when plugging in new metal prices, and then running off to the mine operations department with the new cutoff grade. One should fully understand both the long term and short term impacts of that decision.
In another blog post on the cutoff grade issue, I discuss whether in poly-metallic deposits the cutoff should be based on metal equivalent or block NSR value.  Neither approach is perfect, but I prefer the NSR option.  You can read that post at “Metal Equivalent Grade versus NSR for Poly-Metallics“.

 

Note: If you would like to get notified when new blogs are posted, then sign up on the KJK mailing list on the website.  Otherwise I post notices on LinkedIn, so follow me at: https://www.linkedin.com/in/kenkuchling/.
Share